Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
2004 - Design Plans and Drainage Calculations
CULPEPPER & TERPENING, INC. November 23. 2004 VIA: HAND DELIVER Mr. David W. Fisher, P.E. City Engineer City of Sebastian 1225 Main Street Sebastian, FL 32958 RE: Beach Cove — Phase II Dear Mr. Fisher: Consulting Engineers • Land Surveyors 2980 South 251h Street • Ft. Pierce, FL 34981 (772) 464.3537 • Fax (772) 464-9497 www.ct-eng.com Sender's Email: dnhillios6- c1-eng com 2004 NOU 29 An 7 56 Job 02-127 Please find enclosed a copy of the design plans and associated drainage calculations for the Phase II portion of the Beach Cove project for your records. As you may recall, we were originally contemplating whether or not to tie into the City of Sebastian's drainage system. Since that time, we have completed our drainage analysis, and it is apparent that a portion of our project currently drains to the City's system. We have completed our detailed drainage analysis, as well as the design plans and preliminary plat, and copies are enclosed for your review and approval. We'd also like to point out that pursuant to a request from Indian River County Department of Utility Services (IRCDUS), we have proposed a looped water main connection, which will run to the northwest property corner and tie into the existing water main along the west side of the project. We will need your assistance to address — the proposed water main depth and any utility easements which may or may not be required to utilize the drainage right-of-way. It has been analyzed that approximately 13.47 acres currently drain to the City's system. Please refer to the drainage calculations under the pre -development conditions referencing the basin "PRE -4," as well as the post - development conditions referencing basins "D134" and "DB -5." It was determined in the Phase 11 portion of this project that 58 manufactured homes will tie into the City's system. We understand that the City currently has a stormwater utility, pursuant to Ordinance 0-01-16. It is our understanding that pursuant to Section 102-104, the utility fee is assessed as $4/month/ERU. We are not sure if there is a formal stormwater permit application and review fee that is required to be submitted. If a formal application is required, please email or fax a copy to me, and we will complete and forward to your office. P.V oy=W -]27 Bcch COMwr IWV27-fisher- Page I of We have attached the following information for your review and approval for this project: • Two signed and sealed copies of the civil design plans • Two copies of the preliminary plat • Two signed and sealed copies of the drainage calculations • Two signed and sealed copies of the survey Once again, we appreciate your assistance, and should you have any questions, please feel free to contact me directly at (772) 464-3537, Ext. 231, or via email at the address listed above. Sincerely, CULPEPPER & TERPENING, INC. David L. Phillips, P.E. Project Manager DLP:pw Enclosures cc: Daniel Britton Ban Cook Pvtor20an02-127 each Cowtru MUWVVAsha-i doc Page 2 of 2 ., .m Stormwater Management Calculations for Beach Cove (Phase II) M M Location Sec 20 Twn 3 1 S Rng 39E (West of U.S. Hwy 1 and north of 99th Street) • 00 Prepared By: CULPEPPER & TERPENING, INC. 2980 South 25th Street Fort Pierce, Florida 34981 Office (561) 464-3537 Fax (561) 464-9497 August, 2004 on • Received N ' A 0�! Groff Mgnt .oti�oco91slmsL DAVID L. PHILLIPS RE.#58732 ///y Yla`I Beach Cove (Phase m Manufactured Home Community: Table of Contents Stormwater Management Calculations: ➢ Executive Summary ➢ Location Map ➢ SWMS Calculations ➢ Pre -Development Support Data ➢ Post -Development Support Data ➢ FIRM Map ➢ Geotechnical Report ➢ SCS Soils Data ➢ Rainfall Curves ➢ AdICPR Input Data no r Executive Summary The project was built back in the 1970's and was previously known as New Horizons Manufactured Home Community. It is now referred to as Beach Cove and the owner is proposing to develop the Phase II portion of the project. The overall project is 31.65 acres located on the sand ridge and bounded by U.S. 41 to the East, City of Sebastian Unit #17 to the West, Vicker's Grove mining pit to the North, and vacant residential property to the South. The project is located in Indian River County. Approximately 13.47 acres (depicted as PRE -I in the SWMS calcs) drain to the southwest corner, which connects the City of Sebastian Unit #17 swale a 65' wide drainage right-of-way (refer to the existing conditions exhibit). The Phase I basin, referenced as PRE -2, drains to an existing onsite wetland and is proposed to remain unchanged. The Phase I basin, referenced as PRE -3, drains to the south property line and also is proposed to remain unchanged. The other 7.77 acres, referenced as PRE -1, drain toward the northeast comer of the project, which it remains onsite and utilizes dry retention characteristics based on the existing topography. PRE -I is proposed to add additional recreational amenities such as restroom facility, pool, guest parking, tennis court, volleyball area, and the modifications to the existing dry retention area. The soil conditions are extremely good and well drained based on the geotechnical findings. Indian River County Dept. of Utility Services (IRCDUS) constructed a lift station and force main to facilitate the existing Phase I mobile home community. IRCDUS also provides potable water for Phase I. ,., Since this project was not part of a previous Master Stormwater Management System (MSWMS), we have taken the liberty of providing design criteria for the entire project. This will help provide MSWMS data for St. Johns River Water Management District (SJRWMD), City of Sebastian (COS), and Indian River County (IRC) for future reference. Please note that the pre -development basins PRE -2 & PRE -3 are identical to the post -development basins DB -2 & DB -3 and are proposed to remain unchanged or modified. The following is a brief synopsis of pre. vs. post development calculations for the DB -4 Basin: 1) PRE -4 Pre -Development 13.74 Ac. total drain a area a) Discharge for PRE -4 Basin = 15.26 cfs Mean Annual & 21.73 cfs 25 / 24 b) PRE -1 will continue to function as a dry retention with no discharge off-site c) PRE -2 & PRE -3 will continue to drain as they are and are not proposed to be modified. d) Control Elev. = 19.00' NGVD 2) DB -4 Post -Development 13.74 Ac. total drainage aea includes 5.40 Ac. DB -5 basin .. a) Discharge for DB -4 Basin = 10.68 cfs Mean Annual & 3.21 cfs 25 yr / 24 b) DBA is identical to PRE -1; we just modified the basin name for identification purposes. DB -I dry retention is proposed to be slightly modified to facilitate the proposed recreational amenities such as a rest room facility, pool, guest parking, tennis court, and volleyball area. The dry retention will continue to function as a dry retention with no discharge off-site c) DB -2 & DB -3 are identical to PRE -2 & PRE -3; we just modified the basin name for .. identification purposes. DB -2 & DB -3 will continue to drain as they are and are not proposed to be modified. d) Control Elev. =19.00' NGVD • I 1 1 1 1 I. 1 1 1 1 1 I 1 1 1 I I I I Beech Cove Node Maximum Conditions Auqu.t 3, 2004 Name DB-ISITE DB-ISITE DS-ISITE DB-ISITE DB-2SITE DS-25ITE DS-2SITE DB-2SITE DB-3SITE DB-3SITE DB-35ITE DB-35ITE DB-4SITE DB-4SITE DB-4SITE DB-451TE DB-SSITE DB-SSITE DS-SSITE DB-SSITE PRE-ISITE PRE-19ITE PRE-SSITE PRE-3SITE PRE-25ITE PRE-2SITE PRE-25ITE PRE-2SITE PRE-3SITE PILE-35ITE PRE-3SITE PRE-3SITE PM-4SITE PRE-4SITE PRE-4SITE PRE-4SITE Group Mex Time Simulation Stege hra Max Stage ft Warning Max Delta Stage Stage ft ft Max Surf Are. ft2 MIX Ti.. Inflow hr. Mex Inflow cf. Max Tie. Outflow hra Mex Outflow cfa BASE BASE BAS E BASE 10 YR 24 MR 100 YR 24 MR29.]6 1 25 YR MEAM ANNUAL 29.50 , 5 29.01 29.218 30.515 0.000 0.000 0.000 0.000 0.0050 0.0050 0.0050 0.0034 65243 94072 75398 37961 12.00 12,00 12.001 12.00 12.528 26.620 4.]04 0.00 0.00 0.00 0.000 O.ODO O.OD649-'- -' RY RE?Ea.T7o I El AS,N 1 29.693 1 28.077 BASE BASE BASE BASE 10 YA 24 HR 100 YR 24 HR 25 YR 24 HR NEAM ANNUAL 12.03 12.02 12.03 12.09 19.075 19.109 19.088 19.045 0.000 0.000 0.000 0.000 0.0003 0.0005 0.0004 0.0002 33541 33541 33541 33541 12.00 12.00 12.00 12.00 13.223 27.753 18.021 4.670 12.03 12.02 12.03 12.09 13.018 27.473 17.783 4.565 BASE BASE BASE BASE 10 YR 24 HR 100 YR 24 MIR 25 YR 24 MR MEAN ANNUAL 12.26 12.01 12.05 11.25 31.043 31.069 31.054 31.009 0.000 0.000 0.000 O.D00 0.0050 O.OD50 0.0050 0.0050 11012 12110 11941 11426 12.00 12.00 12.00 12.00 3.372 7.419 4.]14 1.047 12.26 12.01 12.05 17.25 2.842 7.412 4.564 0.121 BASE BASE BASE BASE 10 YR 24 HR 100 YR 2 25 YR 24 MR m ANNUAL 14.66 15.59 16.51 20.65 20.793 ] 21.1 9 20.1251 O.DOO 0.000 0.000 0.000 0.0028 0.0046 0.0039 0.0018 61450 93664 70201 48142 12.00 12.00 12.00 12.00 20.140 37.426 25.994 6.956 14.66 15.59 16.51 20.65 2.196 -5.855 3. � 1 0.676 PHASE WET AETE.,.T�oN $qs4 iv BASE BASE BASE BASE 10 YR 24 HR 100 YR 24 HR 25 YR 24 HR MEAN ANNUAL 21.83 13.96 15.69 20.38 22.522 22,727 22.600 21.357 0.000 0.000 0.000 0,000 0.0030 0.0030 0,0030 0.0020 39115 42333 40330 21279 12.25 12.25 12.25 12.25 4.679 10.042 6.437 1.603 21.92 13.83 15.69 20.13 0.487 5.141 1.815 0.261 BASE BASE BASE BASE 10 YR 24 NR 100 YR 24 MR 25 YR 24 MR MEAN ANNUAL 29.25 29.51 29.51 29.01 29.388 30.427 29.753 28.609 0.000 D.000 0.000 0.000 0.0015 0.0027 0.0023 0.0011 78274 103952 87406 53178 12.00 12.00 12400 12.25 9.732 22.084 13.983 2.616 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 BASE BASE BASE BASE 10 YR 24 HA 100 YR 24 HR 25 YR 24 HR MEAN ANNUAL 29.75 29.99 30.01 29.51 21.592 23.051 22.140 20.212 0.000 0.000 0.000 0.000 0.0030 0.0050 0.0043 0.0021 58192 67828 71689 36193 12.00 12.00 12.00 12.00 13.223 21.753 18.021 4.670 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 BASE SASE BASE BASE 10 YR 24 HR 100 YR 24 MR 25 YR 24 RR MEAN ANNUAL 28.25 28.51 28.51 28.01 32.060 33.052 32.425 31.204 0.000 0.000 0.000 0.000 0.0050 0'.0050 0.0050 0.0050 23279 34133 27095 13641 12.00 12.00 12.00 12.00 3.372 7.479 4.714 1.047 0.00 0.00 0.00 0.00 0.000 0.000 .0.000 0.000 BASE BASE BASE BASE 10 YR 24 MR 100 YR 24 HA 25 YR 24 HA MEAN ANNUAL 30.00 29.99 30.01 30.00 22.053 23.417 22.555 20.879 0.000 0.000' 0.000 0.000 0.0031 0.0038 0.0035 ` O.G029 105478 152624 122589 64712 12.00 12.00 12.00 12.25 15.620 34.28] 21.722 5.263 0.00 0.00 0.00 0.00 O.ODO 0.000 0.000 0.000 D.L. Phillipe, P.E. Interconnected Channel and Pond Routing Model (ICPR) ®2002 Streamline Technologies, Inc. Page 1 of I Location Map HlCrturcY -'M �.. 9 �.. _ ) �lIID_J— ENK;�1�3TjR BD m n. z co s � ASPEX RMA' BVN a 3 o mOLEANDER ST ST' > s - m� o NOBLES ST m <- n /yF ���::-�y v m m �' i .e t /a MOHAWK IST: m < - (/1 D '�]WIMBROW `pmqi > a�b - - y Z. I BALBOA' 9 0' ST 9 v a o n o �� AflBOfl S •y}y�o w _ csTa z _ oR FI AVE Y Oflo -� 11 y W .S- WE LI ERO `'I-L USIANA. a T�fl fi-1 (y Vf.LSV83S �. _ o CANG�I z r I � D D 3 MARSHSFLINT o 3 3 <-_ E FISCXEp CIN NAflIAN � ST a '^ I 0y � a�fA j MABRY ST �.... � oaTao �,� 4�O O xsv_'o _LANG , �Si _• y m J s m n z GILSENi. S z M3N\b y� Y k s s`. K z ST < y D < D 'C AWFOflO i. t• D F��a` �g �`� < a Dv� OIL ON. ��! m m s -i - w, cn SPH LEY A4 m amg /p_ z •-61-PARKWAY ro /� c e m�7< y .`gyp J` <gr m -m < :0 cno (1 (/ ,Nv✓ "/ (� /.� w O m m n m 33 cf) a zPALMETTO AVE m / 9 ti 51 AVE nr p� .°Y D C ° a ym z vo oC9 .m �+!� �}�p ems, �,. Aft .,i i !.WI rm k..rl m, � mu it m rr m m IF, �0R a om ILAH�HMUNI % o� S o 3 ¢ < W BARBER 9 �• HINCHMANab AVE y 2 T LT PTO H H LL -m y 6 y1 MELTON wL aAVE z_ J- - W 30 a o 3Z958 SEE MAP NO. 6 o�< Q (I BIMIIV L THEP Q ` O DoU�E S,JAV. m OR 3 A �� ATHENS CT SOA—R OIEN CT o F P y y W PIRE o I TERCAOIA-OROROUNCANrI ,0 N LA !7 Y ]1) 81 ST 31O 32 } S I' `O3+ k4,DI:l RIVER ,,-.OUNTY Lo ' > FAIRGR�JUND//,�''��KIWAMIS HOBART GSVNORART PARK . R01_I ■ 77 INDI N RIVER a nan 7s HIGHLANDS m n. � ILEA 4f W m m D IV Z O N W� m SWMS Calculations m Oft Beach Cove (Phase II) 8/4/2004 Drainage Calculations Summary Prepared By: CULPEPPER-TERPENING, INC. 2980 South 25th Street Ft. Pierce, FL 34981 .. -- Project #: 02-127 1) Design Criteria Summary: A) Pre -Development Conditions: .. 1) The project was built back in the 1970's and was previously known as New Horizons Manufactured Home Community. It is now referred to as Beach Cove and the owner is proposing to develop the Phase II portion of the project. The overall project is 31.65 acres located on the sand ridge and bounded by U.S. #1 to the East, City of Sebastian Unit #17 to the West, .. Vicker's Grove mining pit to the North, and vacant residential property to the South. The project is located in Indian River County. 2) Approximately 13.47 acres (depicted as PRE -1 in the SWMS mics) drain to the southwest comer, which connects the City of Sebastian Unit #17 swale a 65' wide drainage right-of-way (refer to the existing conditions exhibit). The Phase I basin, referenced as PRE -2, drains to an existing onsite wetland and is proposed to remain unchanged. The Phase I basin, referenced as PRE -3, drains to the south property line and also is proposed to remain unchanged. The other .. 7.77 acres, referenced as PRE -1, drain toward the northeast comer of the project, which it remains onsite and utilizes dry retention characteristics based on the existing topography. PRE -1 is proposed to add additional recreational amenities such as restroom facility, pool, guest parking, tennis court, volleyball area, and the modifications to the existing dry retention area. The soil r. conditions are extremely good and well drained based on the geotechnical findings. 3) Indian River County Dept. of Utility Services (IRCDUS) constructed a lift station and form main to facilitate the existing Phase I mobile home community. IRCDUS also provides potable water for Phase I. 4) Since this project was not part of a previous Master Stonnwater Management System (MSWMS), we have taken the liberty of providing design criteria for the entire project. This will help provide .� MSWMS data for St. Johns River Water Management District (SJRWMD), City of Sebastian (COS), and Indian River County (IRC) for future reference. Please note that the pre - development basins PRE -2 & PRE -3 are identical to the post -development basins DB -2 & DB -3 and are proposed to remain unchanged or modified. 5) The site's pre -development discharge was modeled utilizing AdICPR based on following input parameters: r M r. a) For additional pre -development condition data, please refer to I(C)(1) and I(E)(1) indicated below. b) PRE -1 = 7.77 ac. (Basin sheet flows to shallow dry retention area onsite) 1) The existing NE comer of this basin currently functions as a dry retention area and utilizes the sandy soils for system recovery. 2) Time of Concentration = 29 min (Per TR -55 Eq. 3.1 forlength +/--530 (Per TR -55 method CN 39 perv. & CN L.F.) 3) Curve Number = 56 CN (Per TR -55 method CN 39 perv. & CN (High) 5) Pre -development discharge = 4.67 cis 98 lmperv) 4) Site's Stg. vs. Storage Range = 28.00 NGVD (Low) (25 yr- 24 hr/Per AdICPR modeled 38.50 NGVD (Nigh) 5) Pre -development discharge = 0.00 cis (N/A, since project does not outfall ollsite) c) PRE -2 = 8.18 ac. (Basin sheet flows to the South into an existing wetland) 1) This basin is proposed to remain unchanged. 2) Time of Concentration = 31 min (Per TR -55 Eq. 3-1 for length +/--840 02-127swMSCalosAs Page 1 of 10 Calculation By David L. Phillips, P.E. L.F.) 3) Curve Number = 63 CN (Per TR -55 method CN 39 perv. & CN 98 lmperv) 4) Site's Sig. vs. Storage Range = 19.50 NGVD (Low) 28.50 NGVD (High) 5) Pre -development discharge = 4.67 cis (Mean Annual7PerAdICPR modeled Discharge rate) 18.02 cis (25 yr- 24 hr/Per AdICPR modeled Discharge rate) 02-127swMSCalosAs Page 1 of 10 Calculation By David L. Phillips, P.E. Beach Cove (Phase II) Drainage Calculations Summary .� 8/4/2004 Prepared By: CULPEPPER-TERPENING, INC. 2980 South 25th Street Ft. Pierce, FL 34981 r Project #: 02-127 d) PRE -3 = 223 ac. (Basin sheet flows to the South along the property line) 1) This basin is proposed to remain unchanged. Basin Area Not Included 2) Time of Concentration = 26 min (Per TR -55 Eq. 3-1 for length +/--300 Basin Description L.F.) 3) Curve Number = 59 CN (Per TR -55 method CN 39 perv. & CN 0.76 ac. 98 lmperv) 4) Site's Sig. vs. Storage Range = 30.00 NGVD (Low) 37.80 NGVD (High) 5) Pre -development discharge = 1.05 cfs (Mean Annual /PerAdICPR modeled Total Basin Area (29 Exist, Lots/ Discharge rate) 4.72 cis (25 yr- 24 hr/PerAdICPR modeled 5proposed) Discharge rete) e) PRE -4 = 13.47 ac. (Basin sheet flows to the South into an existing wetland) - 1) TheexistingSW comer of this basin currently functions as a dry detention area prior to overflowing into the existing City of Sebastian Unit 17 Swale. Right-of-ways 2) Time of Concentration = 48 min (Per TR -55 Eq. 3-1 forlength +/--1400 0.00 ac. L.F.) 3) Curve Number = 61 CN (Per TR -55 method CN 61 perv. & CN 1.21 ac. 981mperv) 4) Site's Sig. vs. Storage Range = 19.00 NGVD (Low) 36.00 NGVD (High) 5) Pre -development discharge = 5.26 cfs (Mean Annual /PerAdICPR modeled Residential (Assume 18x60' home Discharge rate) 21.73 cis (25yr-24 hr/PerAdICPR modeled Discharge rate) g) Per the PRE -4 drainage basin routings, it was determined that a total of 21.73 afs discharges into the City of Sebastian's Unit #17 swale per 25 year/ 24 hour storm event and 5.26 cfs per the Mean Annual storm event. Total Impervious (Pvmt.+ Bldg.) B) Post -Development Conditions a) Total Pavement (Roads, Basin Area Not Included Basin Area Drainage Basin Description Total Basin Area In the Beach Cove Phase Per Beach Basin 0.76 ac. 1phase I & 11) II Improvements Cove 0.63 ac. ' (Exist Phase I) (Phase II) 1) DB -1 Total Basin Area (29 Exist, Lots/ 7.77 ac. 5.24 ac. 2.53 ac. Recreational Area 5proposed) 0.20 ac. 1.36 ac. a) Total Pavement (Roads, 1.64 ac. 1.05 ac. 0.58 ac. 1.65 ac. Driveways Sidewalks, etc...) 0.29 ac. Right-of-ways 0.76 ac. 0.76 ac. Recreational Area 0.63 ac. 0.13 ac. 0.50 ac. 1.73 ac. Residential (Assume 12x20' 0.24 ac. 0.16 ac. 0.08 ac. Recreational Area driveway per lot) 0.20 ac. 1.36 ac. Residential 1.99 ac. Right-of-ways 0.76 ac. 0.76 ac. 0.00 ac. b) Total Bldg. Coverage 1.43 ac. 1.21 ac. 0.22 ac. Recreational Area 0.03 ac. 0.02 ac. 0.01 ac. Residential (Assume 18x60' home 1.40 ac. 1.20 ac. 0.21 ac. w/12x60' carport) c) Total Impervious (Pvmt.+ Bldg.) 3.07 ac. 2.27 ac. 0.80 ac. Recreational Area 0.66 ac. 0.15 ac. 0.51 ac. Residential 1.65 ac. 1.36 ac. 0.29 ac. Right-of-ways 0.76 ac. 0.76 ac. 0.00 ac. d) Total Pervious (Total Basin - 4.70 ac. 2.97 ac. 1.73 ac. Total Imperv.) Recreational Area 1.57 ac. 0.20 ac. 1.36 ac. Residential 1.99 ac. 1.62 ac. 0.37 ac. Right-of-ways 1.15 ac. 1.15 ac. 0.00 ac. 02-127SWMSCalwAs Page 2 of 10 Calculation By: David L. Phillips, P.E. M 0.6 ..1 -.. Recreational Area Beach Cove (Phase II) 0.00 ac. 0.00 ac. Residential 8/4/2004 0.52 ac. Drainage Calculations Summary Right-of-ways Prepared By: CULPEPPER-TERPENING, INC. 0.22 ac. 0.00 ac. d) Total Pervious (Total Basin - 1.49 ac. 1.49 ac. 2980 South 25th Street �+ Total Imperv.) Recreational Area Ft. Pierce, FL 34981 0.00 ac. 0.00 ac. Residential 1.36 ac. 1.36 ac. Project M 02-127 Right-of-ways 0.13 ac. 0.13 ac. 0.00 ac. Basin Area Not Included Basin Area Drainage Basin Description Total Basin Area in the Beach Cove Phase Per Beach Basin (Phase 1811) II Improvements Cove (Exist Phase 1) (Phase 11) 2) DB -2 Total Basin Area (40 Exist. Lots) 8.18 ac. 7.85 ac. 0.33 ac. a) Total Pavement (Roads, 1.69 ac. 1.69 ac. 0.00 ac. Driveways Sidewalks, etc...) Recreational Area 0.00 ac. 0.00 ac. 0.00 ac. Residential (Assume 12'x20' 0.22 ac. 0.22 ac. 0.00 ac. ... driveway perlot) Right-of-ways 0.70 ac. 0.70 ac. 0.00 ac. Wetland 0.77 ac. 0.77 ac. 0.00 ac. b) Total Bldg. Coverage 1.65 ac. 1.65 ac. 0.00 ac. Residential (Assume 18'x60' home 1.65 ac. 1.65 ac. 0.00 ac. w/12'x60' carport) c) Total Impervious (Pvmt. + Bldg.) 3.35 ac. 3.35 ac. 0.00 ac. Recreational Area 0.00 ac. 0.00 ac. 0.00 ac. Residential 1.87 ac. 1.87 ac. 0.00 ac. Right-of-ways 0.70 ac. 0.70 ac. 0.00 ac. Wetland 0.77 ac. 0.77 ac. 0.00 ac. d) Total Pervious (Total Basin - 4.83 ac. 4.50 ac. 0.33 ac. Total Imperv.) Recreational Area (Grassed 0.33 ac. 0.00 ac. 0.33 ac. Parking Area) Open Space Area 0.40 ac. 0.40 ac. 0.00 ac. Residential 3.71 ac. 3.71 ac. 0.00 ac. Right-of-ways 0.39 ac. 0.39 ac. 0.00 ac. 31DB3 Total Basin Area (11 Exist. Lots) 2.23 ac. 2.23 ac. 0.00 so. a) Total Pavement (Roads, 0.28 ac. 0.28 as 0.00 ac. Driveways Sidewalks, etc...) Recreational Area 0.00 ac. 0.00 ac. 0.00 ac. Residential (Assume 125r20' 0.06 ac. 0.06 ac. 0.00 ac. _ driveway per lot) Right-of-ways 0.22 ac. 0.22 ac. 0.00 ac. b) Total Bldg. Coverage 0.45 ac. 0.45 ac. 0.00 ac. Recreational Area 0.00 ac. 0.00 ac. 0.00 ac. Residential (Assume 18'x60' home 0.45 ac. 0.45 ac. 0.00 ac. w/12k60' carport) c) Total Impervious (Pvmt. + Bldg.) 0.74 ac. 0.74 ac. 0.00 ac. -.. Recreational Area 0.00 ac. 0.00 ac. 0.00 ac. Residential 0.52 ac. 0.52 ac. 0.00 ac. Right-of-ways 0.22 ac. 0.22 ac. 0.00 ac. d) Total Pervious (Total Basin - 1.49 ac. 1.49 ac. 0.00 ac. �+ Total Imperv.) Recreational Area 0.00 ac. 0.00 ac. 0.00 ac. Residential 1.36 ac. 1.36 ac. 0.00 ac. Right-of-ways 0.13 ac. 0.13 ac. 0.00 ac. 02-127SWMSCalcs.xls Page 3 of 10 Calculation By: David L. Phillips, P.E. Beach Cove (Phase 11) 8142004 Drainage Calculations Summary Prepared By: CULPEPPER-TERPENING, INC. 2980 South 25th Street Ft Pierce, FL 34981 Project #: 02-127 Drainage Basin Basin Description Total Basin Area (Phase 1811) Basin Area Not Included inthe Beach Cove Phase II Improvements (Exist Phase 1) Basin Area Per Beach Cove (Phase Ili 4) DB -4 Total Basin Area (26 Proposed 8.07 ac. 0.00 ac. 8.07 ac. a) Lots) 0.15 ac. 0.00 ac. 0.15 ac. a) Total Pavement (Roads, 2.72 ac. 0.00 ac. 2.72 ac. e) Driveways Sidewalks, etc...) 0.15 ac. 0.00 ac. 0.15 ac. Residential (Assume 12520' 0.14 ac. 0.00 ac. 0.14 ac. b) driveway perlot) 1.16 ac. 0.00 ac. 1.16 ac. Right-of-ways 1.81 ac. 0.00 ac. 1.81 ac. Lake 0.78 ac 000 ac 078 b) Total Bldg. Coverage 1.03 ac. 0.00 ac. 1.03 ac. Residential (Assume 18k60' home 1.03 ac. 0.00 ac. 1.03 ac. w/12k60' carport) c) Total Impervious (Pvmt. + Bldg.) 3.76 ac. 0.00 ac. 3.76 ac. Residential 1.17 ac. 0.00 ac. 1.17 ac. Right -of --ways 1.81 ac. 0.00 ac. 1.81 ac. d) Total Pervious (Total Basin - 4.31 ac. 0.00 ac. 4.31 ac. Total Imperv.) Open Space Area 2.42 ac. 0.00 ac. 2.42 ac. Residential 1.40 ac. 0.00 ac. 1.40 ac. Right-of-ways 049 ac 000 ac 049 ac 5) DBS Total Basin Area (29 Proposed 540 ac. 0.00 ac. 5.40 ac. 19.04 it NGVD Lots) 1908.it NGVD 31.01itNGVD d) a) Total Pavement (Roads, 0.15 ac. 0.00 ac. 0.15 ac. d) Driveways Sidewalks, etc...) 20.79 It NGVD (Exist Min. Road El. 21.14 flNGVD e) Residential (Assume 12520' 0.15 ac. 0.00 ac. 0.15 ac. driveway per lot) b) Total Bldg. Coverage 1.16 ac. 0.00 ac. 1.16 ac. Residential (Assume '18k60' home 1.16 ac. 0.00 ac. 1.16 ac. w/12k60' carport) c) Total Impervious (Pvmt+ Bldg.) 1.31 ac. 0.00 ac. 1.31 ac. Residential 1.31 ac. 0.00 ac. 1.31 ac. d) Total Pervious (Total Basin - 4.09 ac. 0.00 ac. 4.09 ac. Total Imperv.) Open Space Area 409 ac 000 ac 4.09 ac C) Minimum elevations: 1) SJRWMD Mean Annual Storm Event Max. Stage Elev.: (perAdICPR mean annual routed event) a) DBA = 28.08 it NGVD b) OB -2 = 19.04 it NGVD .. ..c)..DB-3= 1908.it NGVD 31.01itNGVD d) DB -4= 20.12 it NGVD e) DB -5 = 21.36 It NGVD 2) Min. Roads and Parking Elevation: (perAd/CPR 10 year/24 hour routed event) a) DBA = 29.22 ft NGVD (Exist. Min. Road EL 29.50 R NGVD b) DB -2 = 1908.it NGVD (Exist. Min. Road El. 21.14 ft NGVD c) DB -3 = 31.04 ft NGVD (Exist. Min. Road El. 29.80 ftNGVO d) DB -4 = 20.79 It NGVD (Exist Min. Road El. 21.14 flNGVD e) DB -5 = 22.52 it NGVD (Exist. Min. Road El. N/A ftNGVD 02-127-SWMSCalm.)ds Page 4 of 10 Calculation By. David L. Phillips, P.E. Nei .i r r M Beach Cove (Phase II) Drainage Calculations Summary 8/4/2004 Prepared By: CULPEPPER - TERPENING, INC. 2980 South 25th Street Ft. Pierce, FL 34981 Project #: 02-127 3) Finish Floor Elevation (F.F.E.): (per 100 year/24 hourrouted storm event, used for determining the FEMA base flood within Zone A"andperindianRiver County requirement) Ift 02-1275WMSCa1cs.xls Page 5 of 10 Calculation By: David L. Phillips, P.E. a) DBA = 30.52 ft NGVD b) DB -2 = 19.11 ft NGVD c) DB -3= 31.05ftNGVD d) DB -4 = 21.97 ft NGVD e) DB -5 = 22.73 ft NGVD 4) Finish Floor Elevation (F.F.E.): (per 100 year/24 hour zero discharge) a) DBA = 30.53 ft NGVD b) DB -2 = 22.93 ft NGVD Since this basin is proposed to remain unchanged or modified, and that the perimeter control conditions were not able to be included in the routing, we recommend future min. F.F.E. be set 18"above road crown elevation c) DB -3 = 35.75 ft NGVD Since this basin is proposed to remain unchanged or modified, and that the perimeter control conditions were not able to be included in the routing, we recommend future min. r. F.F.E. be set 18" above road crown elevation d) DB -4 = 2263 ft NGVD e) DBS = 25.03 ft NGVD 1) Per FIRM Maps dated 7/22/1992, Panel #12061 C0079 F, the southwest portion of the project is located in Flood Zone "A" (flood elevation undetermined), and the remainder of the project is located in Flood Zone 'W'. Refer to the attached design plans, boundary & topo. survey, and excerpt of FIRM, which is included with these calcs. 5) Perimeter Grade: (perAdICPR 25 year/24 hour routed event) a) DBA = 29.69 ft NGVD b) DB -2 = 19.09 ft NGVD c) DB -3 = 31.05 ft NGVD d) DB -4= 21.16ftNGVD e) DBS = 22.60 ft NGVD D) Design Storm Allowable Discharge: (Pre -Development vs. Post -Development) .1) The proposed SW MS is designed in accordance with the criteria established by the St. Johns River Water Management District (SJRWMD), and Indian River County. The .. discharge for the Phase II DB -4 basin improvements is from a wet detention area, which outfalls to the City of Sebastian Unit 17 existing swale per the PRE -4 basin conditions. The allowable discharge is per the Pre -Development AdICPR SJRWMD Mean Annual modeled and the 25 yr / 24 hr storm events. (Refer to the attached AdICPR basin summary results for the basin labeled "PRE -4"). The Post -Development Mean Annual and 25 yr/24 hr storm routing discharge was modeled based on the site's storage using AdICPR (Refer to the attached AdICPR Node Maximum Condition results for the basin labeled "DB -4"). 2) The existing basins PRE -2 and PRE -3, which are consistent with DB -2 and DB -3 post condition, currently drain offsite and are not proposed to be modified. Additional offsite _ analysis was not provided to determine the boundary conditions for PRE -2 & PRE -3 and �. DB -2 & DB -3; the purpose of including these basins in the calcs. was to provide land use breakdown and basin data to help provide an impervious vs. pervious relationship for future reference. PRE -1, which is modeled as DBA in the post condition, will continue to utilize dry retention with no discharge off site and accomplish system recovery with high pert. .� sandy soils. Ift 02-1275WMSCa1cs.xls Page 5 of 10 Calculation By: David L. Phillips, P.E. Beach Cove (Phase 11) Drainage Calculations Summary 8/4/2004 Prepared By: CULPEPPER-TERPENING, INC. 2980 South 25th Street Ft. Pierce, FL 34981 Project #: 02-127 3) The following AdICPR Mean Annual and 25 year /72 hour modeled post -development discharges are as follows: a) DB -1 = 0.00 ds "Mean Annual Storm Event"/Dry Retention & No Off-site b) DB -2 CN = Discharge c) 0.00 cis "25 yr/ 24 hr Storm Event"/Dry Retention & No Off-site d) DB -4 CN = Discharge b) DB -2 = 4.56 cis Mean Annual Storm Event"/Exist. Conditions to be unchanged ormodified 17.78 cfs "25 yr/24 hr Storm Event"/Exist. Conditions to be unchanged ormodified c) DB -3 = 0.12 cfs "Mean Annual Storm Event"/Exist. Conditions to be unchanged ormodified 4.56 cis 725 yr/ 24 hr Storm Event"/Exist. Conditions to be unchanged or modified d) DB4 = 0.68 cfs Mean Annual Storm Event" 3.21 cis "25 yr/24 hr Storm Event" e) DBS = 0.261 cfs Mean Annual Storm Event"/Connects to DB -4 1.82 cfs '25 yr/24 hr Stonn Event" /Connects to DB -4 E) Water Level Elevations: (Per Geotechnical findings, on-site 1) Wet Season Water Table= 19.00 ft. NGVD existing SWMS evaluations, and existing City of Sebastian Unit 17 swale water elevations. F) SCS Curve Number, Soil Storage, & Tc Derivation: 1) Calculations per TR -55 criteria a) D13-1 CN = 62 (Per TR -55 method CN 39 perv. & CN 98lmperv) b) DB -2 CN = 63 (PerTR-55method CN 39 perv. & CN 98lmperv) c) DB -3 CN = 59 (Per TR -55 method CN 39 perv. & CN 98lmperv) d) DB -4 CN = 72 (Per TR -55 method CN 50 perv. & CN 98lmperv) e) DB -5 CN = 62 (Per TR -55 method CN 50 perv. & CN 98lmperv) G) Soil Storage (S): 1) Calculations per TR -55 criteria a) DBA S= 6.05 in (Per TR -55, this value onlyusedin calcsnotforstorage) b) DB -2 S = 5.87 in (Per TR -55, this value only used in talcs not for storage) c) DB -3 S = 6.95 in (Per TR -55, this value only used in ca/cs not forstorage) d) DB -4 S = 3.82 in (Per TR -55, this value only used in calcs not for storage) e) DB -5 S = 6.22 in (Per TR -55, this value only used in calos not for storage) f) Engineer's Soil Suitability Certificate: To the best of my knowledge, the site's soils indicated above will draintpercolate pursuant to the assumptions made in the following drainage calculations. All assumptions are based on the wet season water table conditions for this site. H) Time of Concentration: 1) Calculations per TR -55 criteria a) DBA T,= 29 min (Same as Pre -development) b) DB -2 T,= 31 min (Same as Pre -development) c) DB -3 Tc= 26 min (Same as Pie -development) d) DB4T�= 22 min (Per TR -55 Eq. 3-1 for length +/-790LF.) e) DB -5 T,= 83 min(PerTR-55Eq.3-11brlengthV-1800LF.) 02-127-MMSCalmAs Page 6 of 10 Calculation By: David L. Phillips, P.E. M AM r nn rJ .r OR M ON on M r_i M M OR am Beach Cove (Phase II) Drainage Calculations Summary 8/4/2004 Prepared By: CULPEPPER - TERMING, INC. 2980 South 25th Street Ft. Pierce, FL 34981 Project M 02-127 1) DB4 Design Storms: (Per. S.J,R.W.M.D. Rainfall Depths) Total Site Area = 7.77 Ac. 1) Mean Annual P = 4.8 in (Mean Annual Storm) V = ((4.80 - .2 * 6.048)^21(4.80 + .8 * 6.048)) * I'/12" * 7.770 = 0.87 Ac: Ft 2) 10 Yr. - 1 Day P' 7.8 In (Roads /Parking) V = ((7.80 - .2 * 6.048)^2!(7.80 +,8 * 6.048)) * 1%12" * 7.770 = 2.23 Ac: Pt. 3) 25 Yr. -1 Day P: 9.3 in (Design/Perimeter Berm) V = ((9.30 - .2 * 6.048)^2/(9.30 +.8 * 6.048)) * l'/12" * 7.770 = 3.00 Ac: Ft 5) I00Yr.-IDay P' 12.2 in (Finish Floor Elevationper S)RWAM) V = ((12.20 -.2 * 6.048)`21(12.20 +.8 * 6.048)) * 1712" * 7.770 = 4.59 Ac. -FL 5) 100Yr.-3Day P• 16.6 in (Finish F7oor0euationperlRC) V = ((16.58 -.2 * 6.048)^21(16.58 +.8 * 6.048)) * 1712" * 7.770 = 7.14 Ac. -Ft. J) DB -2 Design Storms: (Per. S,J,R.W.M.D. Rainfall Depths) Total Site Area = 8.18 Ac. 1) Mean Annual P - 4.8 in (Mean Annual Storm) V = ((4.80 - .2 * 5.873)^21(4.80 + .8 * 5.873)) * 1'/12" * 7.770 = 0.90 Ac. -Ft. 2) 10 Yr.- 1 Day P' 7.8 in (RoadslParking) V = ((7.80 - .2 * 5.873)71(7.80 +.8 * 5.873)) * 1'/12" * 7.770 = 2.27 Ac: FL 3) 25 Yr. -IDay P' 9.3 in (DesignlPertmeterBerm) V =((9.30 -.2 * 5.873)^21(9.30+,8 * 5.873)) * 1'/12" * 7.770 - 3.05 Ac: FL 5) 100 Yr. - 1 Day P- 12.2 in (Finish Floor Elevation per S)RWdg7) V = ((12.20 -.2 * 5.873)71(12.20 +.8 * 5.873)) * 1%12" * 7.770 = 4.66 Ac. -FL 5) 100 Yr. - 3 Day P • 16.6 in (Finish Floor Elevation perlRC) V=((16.58 - .2 * 5.873)7/(16.58 +.8 * 5.873)) * 1%12" * 7.770 = 7.22 Ac. -Ft. K) DB -3 Design Storms: (Per. S.J.R,W.M.D. Rainfall Depths) Total Site Area = 2.23 Ac. 1) Mean Annual P = 4.8 in (Mean Annual Storm) V = ((4.80 - .2 * 6.949)^21(4.80 +.8 * 6.949)) * 1)12" * 7.770 = 0.73 Ac: FL 2) IO Yr. - 1 Day P: 7.8 in (Roads 1Parking) V = ((7.80 -.2 * 6.949)^21(7.80 +.8 * 6.949)) * I'/12" * 7.770 = 1.99 Ac: Ft. 3) 25 Yr. -IDay P' 9.3 in (DesignlPenmeter Berm) V = ((9.30 - .2 * 6.949)^2/(9.30 +.8 * 6.949)) * 1'/12" * 7.770 = 2.73. Ac: Ft 5) 100Yr.-IDay P' 12.2 in (Finish Floor Elevationper S)RRIAO) ._ V= ((12.20 -.2 •.6.949)^21(12.20 +.8 *6.949)) * 1'/12" * 7.770 = 4.26 Ac. -FL 5) IOO Yr. - 3 Day P • 1616 in (Fmtsh FloorElevanon perJRQ V = ((16.58 -.2 * 6.949)-V(16.58 +.8 -6.949)) * 1'/12" *7.770 = 6.75 Ac.-Ft- ON c: FL nw 02-127-SWMSCslmAs Page 7 of 10 Calculation 8y: David L. Phillips, P.E. Beach Cove (Phase II) Drainage Calculations Summary L) DBA Design Storms: (Per. S.J.R.W.M.D. Rainfall Depths) Total Site Area = 8.07 Ac. 1) Mean Annual P = 4.8 in (Mean Anrmal Storm) 8/4/2004 Prepared By: CULPEPPER-TERPENING, INC. 2980 South 25th Street Ft. Pierce, FL 34981 Project #: 02-127 V = ((4.80 -.2 * 3.819)^'2/(4.80 +.8 * 3.819)) * 1'/12" * 7.770 - 134 Ac: Ft. 2) 10 Yr. - 1 Day P, 7.8 in (Roads/Parking) V = ((7.80 - .2 * 3.819)^2/(7.80 +.8 * 3.819)) * 1'/12" * 7.770 = 2.95 Ac: Ft. 3) 25 Yr. - 1 Day P = 9.3 in (Design /Perimeter Berm) V = ((9.30 - .2 * 3.819)^21(9.30 +.8 * 3.819)) * 1'/12" * 7.770 = 3.82 Ac: Ft. 5) 100 Yr. - 1 Day P • 12.2 in (Finish Floor Elevation per VRUMD) V = ((12.20 -.2 * 3.819)^7!(12.20 +.8 * 3.819)) * 11/12" * 7.770 = 5.55 Ac. -Ft. 5) 100 Yr. .3 Day P• 16.6 in (Finish Floor ElevahonperlRC) V= ((16.58 -.2 *3.819)71(16.58 +.8 * 3.819)) * 1'/12" * 7.770 = 8.25 Ac. -Ft M) DB -5 Design Storms: (Per. S.J.R.W.M.D. Rainfall Depths) Total Site Area = 5.40 Ac. 1) Mean Annual P= 4.8 in (MeanAnnaalStorm) V = ((4.80 - .2 * 6.222)^71(4.80 +.8 * 6.222)) * 1'/12" * 7.770 = 0.84 Ac: Ft 2) 10 Yr. - 1 Day P 7.8 in (Roads /Parking) V = ((7.80 - .2 * 6.222)^7/(7.80 +.8 * 6.222)) * 1'/12" * 7.770 = 2.18 Ac: Pt 3) 25 Yr. - 1 Day P = 9.3 In (Design/Perimeter Berm) V = ((9.30 -.2 * 6.222)^2/(9.30 +.8 * 6.222)) * 1'/12" * 7.770 = 2.94 Ac. -Ft. 5) 100 Yr. - 1 Day P' 12.2 in (Finish Floor Elevation per SJRNSM) V = ((12.20 -.2 * 6.222)121(12.20 +.8 * 6.222)) * 1'/12" * 7.770 = 4.52 Ac. -Ft 5) 100 Yr. - 3 Day P • 16.6 in (Finish Floor Elevation per IRC) V = ((16.58 -.2 * 6.222)^2/(16.58 + ,8 * 6.222)) * 1'/12" * 7.770 = 7.06 Ac. -Ft. N) Project surface storage: (Refer to the attached calculations) 11) Design Criteria: (Post -Development Conditions) A) Quality: 1) The project's stormwater management system for DBA & 5 will consist of dry swales & wet detention ponds to manage the required water quality and storm attenuation determined below. DBS facilitates water quality and quantity via dry Swale prior to discharging into the lake (DB -4). DB -2 & 3 will remain unchanged per the pre -development condition. DBA will modify an area around the clubhouse area and utilize dry retention with no off-site discharge; therefore, water quality has been achieved. a) Per S.J.R.W.M.D., wet detention volume shall provide for the following, whichever is greater: 1) 1 inches of runoff x total drainage area (DB -5 will handle its own water quality via, dry retention prior to overflowing into DB -4) i) DBA: Calculated Runoff Volume => (1112 8.07) = 0.67 ac -ft ii) DBS: Calculated Runoff Volume => (1112 5.40) = 0.45 ac -ft 2) 2.5 inches Gmes the impervious area (DB -5 will handle its own water quality via. dry retention prior to overflowing into DBA) ) DBA: Calculated Runoff Volume => (2.5/12)'2.98"Impervious Area Does Not 0.62 ac -ft Include Pond" = ii) DB -5: Calculated Runoff Volume => (2.5/12)'1.31 = 0.27 ao-ft 02-12?-SWMSCa1cs.zls Page 8 of 10 Calculation By: David L. Phillips, P.E. 06 G r.. 0.6 SIM ..r a. Beach Cove (Phase II) Drainage Calculations Summary 8(4/2004 Prepared By: CULPEPPER-TERPENING, INC. 2980 South 25th Street Ft. Pierce, FL 34981 Project #: 02-127 02AV-SWMSCalc .xis Page 9 of 10 Calculation By: David L. Phillips. P.E. b) The DB -4 site's water quality pretreatment volume= 0.67 ac -ft C) 21 days residence time (No Littoral Zone) B) Overflow Elevation for DB -4: 1) Water Quality Treatment Elevation (TN,,): a) Vt= 0.67 ac -ft b) Interpolate from the DB -4 site's stage vs. storage computations between EI =19.5' & 20.0' NGVD C) T, = 19.76 it NGVD C) Minimum Permanent Pool Required for D34: 1) DBA Weighted Runoff Coefficient: a) Impervious areas (pavement, bldgs, lakes, shv, etc...) C= 0.90 b) Pervious areas (Open Space) C= 0.30 .. c) Weighted C= 0.58 2) Wet Season Rainfall = 31 in 'Per S.J.R.W.M.D. Figure 29-1" a) Weighted Runoff Coefficient: 1) Impervious areas (pavement, bldgs, lakes, s/w, etc...) C= 0.9 3) Minimum Residence Time = 21 days residence time (No Littoral Zone) (14 days +50% non-Iitforal) 4) Wet Season= 153days June -October" 5) Min. Permanent Pool = 31 in "Per S.J.R. W.M.D. Formulas 29-1, 29-2, 29-3" a) Min. Permanent Pool Required (PPV„,)= 1.66 ac -ft D) Permanent Pool Provided (PPVpr„) : 1) Pond Bottom = 10.00 it NGVD => 0.08 ac. 2) C.E. = 19.00 ft NGVD => 0.78 ac. a) permanent Pool Provided(PPVp,,,)= 3.85 ac -ft E) Mean Depth (MD): Must be between 2 and 8 feet" 1) PPVPM 3.85 ac.ft. 2) Ap = 0.78 ac.ft. (Lake @ C.E. "wetted') a) 4.9 ft OK I "Per S.J.R.W.M.O. Formula 29-15) F) Check Bleeder Volume for DB -4: 1) The bleeder V -Notch weir is sized to discharge 1/2 the treatment volume in the first 48 hours after the 25yr-24hr annual storm event. A rectangular weir was designed and set at the pre-treatment water quality elevation to achieve the pre -development allowable discharge for both the mean annual and 25yr-24hr. Per SJRWMD V -Notch Weir Formula (29.11), the average discharge rate "Q" required to a draw down half the treatment volume'TV' in 48 hours T' and the angle of the V -notch is: 1) V,bwd 0.34 ac.ft. "1/2Treatment Volume" 2) h,t = 0.8 it a) The depth of water between the top of the treatment volume and the vertex of the notch (ft). 3) h,2 = 0.8 ft a) The depth of water between the stage when hall the treatment volume has been released and the vertex of the notch (ft). 4) h, = 0.8 It a) The depth of water (h,) is the average depth above the vertex of the notch between the top of the treatment volume and the stage at which half the treatment volume has been released. 5) B = 6.8 degree V -Notch Weir a) V -Notch weir angle to small and poses a risk for clogging. Try sizing bleed - down using an orifice per the following calculation: 02AV-SWMSCalc .xis Page 9 of 10 Calculation By: David L. Phillips. P.E. Beach Cove (Phase II) Drainage Calculations Summary 8/4/2004 Prepared By: CULPEPPER-TERPENING, INC. 2980 South 25th Street Ft. Pierce, FL 34981 Project #: 02-127 b) Per SJRWMD bleeder orifice formulas, the calculated diameter is: 1) A„ r„ = 6 int "Min. bleeder area allowed to prevent clogging" 2) Dia„+„ = 2.76 inches Min. bleeder diameter allowed to prevent clogging" 3) Qay= 0.04238 cfs 4) by = 1.4 ft As determined above in V -Notch weir calculation" 5) C = 0.6 Orifice coefficient 6) A� = 0.007 ft "Calculated orifice area" 7) D� = 1.2 inches "Calculated orifice diameter' 8) A minimum 3" diameter orifice is typically allowed to prevent the risk of clogging; however, we are proposing a 4" orifice in minimize localized flooding of the existing roadway and to facilitate system recovery. G) On-site & Off-site Erosion and Sediment Control Methodology: 1) The contractor shall implement best management practices to include the following: a) Install silt fence adjacent to perimeter properties. b) Install turbidity barriers adjacent to all wetted areas to minimize turbidity blooms. c) Contractor shall perform daily water monitoring tests to insure off-site stonnwater discharge meets SJRWMD & NPDES criteria. A pre -construction meeting will be held with SJRWMD and the contractor to review all pertinent construction criteria. c) All dry detention slopes, swales, and project perimeter berms shall be sodded to minimize erosion d) An Erosion & Sediment Control Plan has been design for this project and was incorporated into the design plans. H) Master Stormwater Management System Maintenance Entity: 1) The SWMS will be management by the property owner's association (The Beach Cove Property Owner's Association) as identified on the proposed plat, which is unrecorded at this time pending approval from Indian River County. I) Littoral Zone: 1) Since the permanent pool has a residence time of 50% more than the 14 days, a littoral zone is not required by S.J.R.W.M.D.; however, to satisfy Indian River County's requirement for littoral zones accommodating for 30% of the open water area and for wetland mitigation purposes, littoral zones are proposed. Surface area of open water at a) WSWT Elev. = 0.78 ac. _> 33,842 s.f. I.R.Co. littoral zone area required b) (30%' WSWT Elev.) = 0.23 ac. _> 10,153 s.f. c) Littoral zone area provided = 0.23 ac. _> 10,200 s.f. 02-127-SWMSCalos.xis Page 10 of 10 Calculation By: David L. Phillips, P.E. Wit r r r i .1 c 0.0 M 1 1 1 Beach Cove Nude Maximum Conditions Auguat 3, 2004 Name DB-ISITE DB-ISITE DB-ISITE DS -1S ITE DB-251TE DB-2SITE DB-2SITE DB-2SITE DS-3SITE DB-3SITE DB-3SITE DB-3SITE DB-4SITE DB-4SITE DB- 4SITE DS-4SITE DS-5SITE DB-5SITE DB-551TE DB-5SITE PRE-3SITE PRE-3SITE PRE-ISITE PRE-ISITE PRE-2SITE PRE-2SITE PRE-2SITE PRE-2SITE PRE-3SITE PAE-3SITE PRE-3SITE PRE-3SITE PRE-4SITE PRE-4SITE PRE-4SITE PRE-4SITE Yvi Group Max Time Simulation Stage hre Max StageStage It Warning It Max Delta Stage It Mex Surf Area ft2 Max Time Inflow hre Max Inflow cfe Max Time Outflow hra Max Outflow efa BASE ME ME BASE 10 YR 24ME29.50 -10000-YAR-2244 ME 25AM ANNUAL � 29.76 29.51 29.01 29.218 30.515 0.000 0.000 0.000 0.000 0.0050 0.0050 0.0050 0.0034 65243 94072 75398 37961 12.00 12.00 12.00 12.00 12.528 26.620 17.170 1.304 0.00 0.00 0.00 0.00 0.000 O.ODO D.OGO O.000Qrr P11 AiC BAS,.v 1Z DQY IiE� tw�T10 N r -27.-A" 28.077 ME BASE BASE BASE 10 YR 24 HR 100 YR 24 MR 25 YR 24 HE MEAN ANNUAi, 12.03 12.02 12.03 12.09 19.075 19.109 19.088 19.045 0.000 0.000 O.DOD 0.000 0.0003 0.0005 0.0004 0.0002 33541 33541 33541 33541 12.00 12.00 12.00 12.00 13.223 27.753 18.021 4.670 12.03 12.02 12.03 12.09 13.018 27.473 17.783 4.565 ME BASE BASE BASE 10 YR 24 HE 1DO YR 24 HE 25 YR 24 HR MEAN ANNitAI. 12.26 12.01 12.05 17.25 31.043 31.069 31.054 31.009 0.000 0.000 0.000 0.000 0.0050 0.0050 0.0050 0.0050 11812 12110 11941 11426 12.00 12.00 12.00 12.00 3.372 7.479 4.714 1.047 12.26 12.01 12.05 17.25 2.842 7.412 4.564 0.121 BASE BASE BASE BASE 1D YR 24 ME 1 0 YR 24 25 YR 24 MR MEAN ANNUAL 14.66 15.59 16.51 20.65 20.793 21. ] 0.000 0.000 0.000 0.000 0.0028 0.0046 0.0039 0.0018 61450 93664 70201 40142 12.00 12.00 12.00 12.00 20.140 37.426 25.994 6.956 14.66 15.59 16.51 20.65 2.196 5.055 1 1 0.676 PHASE a WfT DETE,7101 ZASIN 21.159 20.125 BABE BASE BASE BABE 10 YR 24 HE 100 YR 24 RR 25 YR 24 HR MEAN ANNUAL 21.83 13.96 15.69 20.30 22.522 22.727 22.600 21.357 0.000 0.000 0.000 0.000 0.0030 0.0030 0.0030 0.0028 39115 42333 40330 21279 12.25 12.25 12.25 12.25 4.619 10.042 6.437 1.603 21.92 13.83 15.69 20.13 0.487 5.141 1.815 0.261 ME BASE BASE ME 10 YA 24 HR 100 YR 24 HR 25 YR 24 M MEAN ANNUAL 29.25 29.51 29.51 29.01 29.388 30.427 29.753 26.609 0.000 0.000 0.000 0.000 0.0015 0.0027 0.0023 0.0011 78274 103952 07406 53170 12.00 12.00 12:00 12.25 9.732 22.884 13.983 2.616 0.00 0.00 0.00 0.00 O.DDD 0.000 0.000 D.000 BASE BASE BASE BASE 10 YR 24 NR 100 YR 24 HR 25 YR 24 HR MEAN ANNUAL 29.75 29.99 30.01 29.51 21.592 23.051 22.140 20.212 0.000 D.000 0.000 0.000 0.0030 0.0050 0.0043 0.0021 58792 87820 71668 36193 12.00 12.00 12.00 12.00 13.223 27.753 18:021 4.670 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 ME BASE BASE BASE 10 YR 24 MR 100 YR 24 HR 25 YR 24 HE MEAN ANNUAL 28.25 28.51 20.51 28.01 32.060 33.052 32.425 31.204 0.000 0.000 0.000 0.000 D.0G50 D'.OD50 0.0050 0.0050 23219 34133 27095 13641 12.00 12.00 12.00 12.00 3.372 7.479 4.714 1.047 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.000 BASE BASE BASE BASE 10 YR 24 HR 100 YR 24 HR 25 YR 24 AR MEAN ANNUAL 30.00 29.99 30.01 30.00 22.053 23.417 22.555 20.879 0.000 0.000 0.000_ 0.000 0.0031 0.0038 0.0035 0.0029 105478 152624 122569 64712 12.00 12.0G 12.00 12.25 15.620 34.287 21.122 5.263 0.00 0.00 D.00 0.00 0.000 0.000 - 0.000 0.000 Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 1 of 1 .. M w .. M ., M on M PM -04 M w M Pre -Development Support Data IP al"P a+llaalp 1 M tL'D 9 x .S[ 4 m m4]E q r/1 wl ]W IJ K[r 01 DbM1S IY .6C'DL 9 5,1('11 W[BY aNm] SSYLLX V' "1'C" LU 'Y MI'X"DS »M .VG la pafuart °plml3 ° I° lm W W MD1NrNB ryY'UJ Kq R Tx xtl 4xmJ 13 m0 9 w ,6B 11 0301n10 n5 lON NnrNN]N3B 1 Ya) 03tl1B11rvWl W) n mx w° lM[SM.S .nom ' lu. M1a.xu t[t. YrM tlYVY mal p,x,Jv sattn tlarw ¢I rm[n •Yu' ClN^ e Stl3a01n ,48.4ZCI M„44,6C.686•m leJ3e115 4166 yw. mX salvo mYa ml o- J' [a rvt"[[am w .. • n.[ rx.y v �_—.._—_-- / s• `4.. Y va rn IKX m'aG •w01 ' • • n.R 1w (Y KD9 x r a I I ,PL K A LC IC) a' Y�mYn • ri "' aI MIYMnI [SM itlLn]} J MEvl a[IWn 440 1 W YnflWt r.r mY[1J IV 1lXpp5Va 1trN6r ,0C. y r r\, •°t' '4' !<I-IYNm _ ar]Ix.KP♦ C2 [p i --� y,{ r¢I gP[-i Wrn39q '1SV351 M.8 'NI r.. "Pa mw vYd•']9i a `f�b L P ''ii yXy ¢¢¢�� Sl )rM.WI \ ® 2555 ww” 3. tlomw .ro r >Y � \ e '9[• ., �r. >02 Dow[ < rru.D l.mna ]u3mm l.wurx oa Pn uj MrY K[ \ 8 � 8 / / �� t aaarn aryl n � � sty � ar] aw mtl IoM aro Kmx a � — 1° J # tl'.r IR ^ Iran Da Nn )m[ Wou 2cD1 eno m.arn awl wmu3mna s]-a w r • � t'••., � lx]IIEr3 ]. zm0Y 5aW]3tl NdJA BYP m [ II \1 � V p [ Lrs ,{� ,1 1 WYr/.3.3 d' N L ad I Y4�Y r'N'LIY r M1[''()t[T '- 1Wa ll]x ® O i' �,Irr°X 0 Yx Q ul b 1 N w Nlve tl3va CO 2 d rnAJ v[ Y Y om\ m NIVa tlllvY Pa YInY ur Y) 0 m tll' j � y a• 1Si• -ImN .B) ItlHW 3 3lnwrn +wlM+s .iL al-lata sl lYa9a sm[Yln anxnao —..— I.M.Ir[dr ° .1 Joa-xwlrn3n mu ml I 3roxwn.3MM 3na tl]xgi ]l3Ylm] {} ["'•nom `° J°alLlYr 2\.ri wi.nuwY 'O xtl9nH]N3B 913W '8 N009191d )me tl3MPa aoox p o IxamorotlN) als,_ �IannuXE "°4i X i Ll IINn SONVIHOIH NVUSV83S. 53:a W zmn mY 0 sw3[mxon ..r c 1011 ONO e ` M b .91 e 9 s .W'PI xY g� ,48'659 3„ 0.44.68 weN°vc aY""ron I r[a tit N K2. mD].w15 J.3MmrDY]x) •rarmr v40""wYi1 ° —3Od': »a pg la owowa ul (M.CDPH S,m1I ,IXr.21 Invtln) N bu mm %[p ON qj L"xJ x N rn O h .11 nmanui1°"yOX 030woen510N an. z •°i wnmme�Y � w t W • �[2 .n. > o Z O0 V N p ISr3 6C Ewtl 'xllpS [e051Wg1 I)![L19 g.g[X) rw� [X nn�N in %•a Neu OL xPiuE n r/1 xx InEw]) O /1 N tl Y]Wp] N ar] R mtl mM gtlY'IJ ,L6'LS9 3„60.bb.68N gv[. 41`A3aw3s/ .L6'LS9 [ ',46'5 ICI .0- 13.4Z M.13.1[ 0193YLLI fg< [n' 13[10500 D) • u[ 213lltJW >d 11V11315VW 1NIOdOIW weN°.W o°I OJ r°[ 030w0en51ON 1x3".VT Iw!J3”TYR7VJ°]a+'"'4ytlll31Stl1fN111AN11�dU11WdB35 i t t i t I t Beach Cove Basin Summary (Pre -Development Conditions) August 3, 2004 Name: PRE -1 PRE -2 PRE -3 PRE -4 PRE -1 Group: BASE BASE BASE BASE BASE Simulation: 10 YR 24 HR 10 YR 24 HR 10 YR 24 HR 10 YR 24 HR 100 YR 24 M Node: PRE-ISITE PRE-2SITE PM-351TE PRE-4SITE PRE-ISITE Type: SB SR SB SB SB Spec Time Inchnin): 15.00 15.00 15.00 15.00 15.00 Comp Time Inc(min): 15.00 15.00 15.00 15.00 15.00 Rain File: Flood Flood Flood Flmod Flood Rain Amount(in): 7.EDO 7.800 7.800 7.800 12.200 Duration(hrs): 24.00 24.00 24.00 24.00 24.00 Status: Onsite Onsite Onsite Onsite Onsite TC(min): 29.00 31.00 26.00 48.00 29.00 Time Shift(hral: 0.00 0.00 0.00 0.00 0.00 Aree(ac): 7.770 8.180 2.230 13.470 7.770 Curve Num: 56.000 63.000 59.000 61.000 56.000 DCIA(4): 0.000 0.000 0.000 0.000 0.000 Time Hax(hrs): 12.00 12.00 12.00 12.00 12.00 Flow Hax(cfs): 9.734 13.227 3.373 15.621 22.897 Runaff Volume(in): 2.754 3.512 3.076 3.293 6.111 Runoff Vol,me(ft3k 77682.927 104286.666 24898.081 161011.870 172361.853 ... .Name: PRE -2 PRE -3 PRE -4 PRE -1 PRE -2 Group: EASE EASE BASE BASE RASE Simulation: 100 YR 24 HR 100 YR 24 HR 100 YR 24 RR 25 YR 24 HR 25 YR 24 HR Node: PRE-25ITE PRE-35ITE PRE-4SITE PRE-ISITE PRE-2SITE Type: SB SB SB SB SB Spec Time Inc(min): 15.00 15.00 15.00 15.00 15.00 Comp Time Inc(min): 15.00 15.00 15.00 15.00 15.00 Rain File: Flmad Flmod Flmod Flmod Flood Rain Anount(in): 12.200 12.200 12.200 9.300 9.300 Duration(hrs): 24.00 - 24.00 24.00 24.00 24.00 Status: Onsite Onsite Onsite Onsite Onsite TC(min): 31.OD 26.00 48.00 29.00 31.00 Time Shift(hrs): O.DD 0.00 0.00 0.00 0.00 Area (ac): 6.180 2.230 13.470 7.770 0.180 Curve Num: 63.000 59.000 61.000 56.00D 63.000 DCIAM : 0.000 0.000 0.000 0.000 0.000 Time Max(hrs): 12.00 12.00 12.00 12.00 12.00 Flow Hax(cfs): 27.767 7.483 34.295 13.986 18.024 Runoff Volumelinj: 7.194 6.580 6.889 3.832 4.716 Runoff V.I.(Et3): 213600.SB7 53265.991 336827.426 108093.439 140045.855 Name: PRE -3 PRE -4 PRE -1 PRE -2 PRE -3 Group: BASE EASE BASE BASE BASE Simulation: 25 YR 24 HR. 25 YR 24 HR HEAN ANNUAL NEAN ANNUAL HEAN ANNUAL Node: PRE-35ITE PRE-45ITE PRE-35ITE PRE-2SITE PRE-3SITE Type: SE SB SB 58 SE Spec Time Inc(min): 15.00 15.00 15.00 15.00 15.00 Comp Time Inc(min): 15.00 15.DO 15.00 15.00 15.00 Rain File: Flmod Flood Flood Flood Flood Rain Amount(in): 9.300 9.300 4.800 4.000 4.000 Duration(hra): 24.00 24.00 24.00 24.00 24.00 Status: Onsite Onsite O:ssite Onsite Onsite TChoin): 26.00 48.00 29.00 31.00 26.00 Time Shift(hrs): 0.00 0.00 0.00 0.00 0.00 Area(ac): 2.230 13.470 7.770 8.180 2.230 Curve Nus: 59.000 61.000 56.000 63.000 59.000 DCIA(4): 0.000 O.ODO 0.000 0.000 0.000 Time Max(hrs): 12.00 12.00 12.25 12.00 12.00 Flow Max(cfs): 4.715 21.726 2.616 4.671 1.048 Runoff V.I.(in): 4.211 4.464 0.940 1.384 1.123 Runoff Volumelft3): 34086.622 218251.730 26520.675 41088.46D 9087.231 Name: PRE -4 Group: BASE Simulation: MEAN ANNOAL Node: PRE-45ITE Type: SB Spec Time Inc (mint: 15.00 Comp Time Inclmin): 15.00 Rain File: Flmod Rain Amount(in): 4.800 Duration(hrs): 24.00 Status: Onsite TC(min): 48.00 Time Shift(hrs): 0.00 Area(ac): 13.470 ""'Curve Num: 61:000 DCIA(8): 0.000 Time Hax(hrs): 12.25 Flow Maxlcfsl: 5.264 Runoff Volume Iin) : 1.251 Runoff Vmlume(ft3): 61150.637 O.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page I of 1 J J I OeM ISI Pei M 4q M TR -55 WORKSHEET 3 Time of Concentration or Travel Time Project : Beach Cove Location: PRE -1 By : DLP Checked: Date 8-3-04 Date M M M M Circle One: Presen Developed Circle One: Tc Tt through subarea Notes: Space for as many as two segments per flow type can be used for each worksheet. Inlcude a map, schematic, or description of flow segments. SHEET FLOW (Applicable to Tc only) Segment ID A - B 1. Surface Description (table 3-1) .............. grass/sand 2. Manning's roughness coeff.,n (table 3-1)...... .24 0. 3. Flow Length, L (total L <= 300 ft) .......... ft 300 4. Two -yr 24 -hr rainfall, P2 ................... in 5.2 0. 5. Land slope ,s...............................£t/ft 0.0198 0. on 6. Tt = 0.007(nL)^.8/P2^.5 s^.4 Compute Tt.... hr 0.4511 0. 0.4511 SHALLOW CONCENTRATED FLOW Segment ID B -C 7. Surface Description (paved or unpaved) ....... grass/sand 8. Flow Length, L .............................. ft 230 9. Watercourse Slope, s ........................ ft/ft 0.0198 0. 10. Average Velocity, v (from figure) ............ft/s 2.1 0. 11. Tt - L/(360OV) Compute Tt.... hr 0.0304 0. 0.0304 CHANNEL FLOW Segment ID 12. Cross Sectional Flow Area, ................. ft^2 0. 0. 13. Wetted Perimeter, Pw ......................... ft i14. Hydraulic Radius r = a/Pw ................... ft , 15. Channel Slope, s ............................ ft/ft 0. 0. 16. Manning's roughness coeff.,n ............... 0. 17. V=1.49 r12/3 s^1/2 / n Compute V ..........ft/s 0. 0. .18. Flow Length, L .............................. ft dM19. Tt = L/(3600V) Compute Tt.... hr 0. 0. 0. 20. Watershed or subarea Tc or Tt .add Tc in steps 6,11, and 19 hr 0.482 2 9 M M M M TR -55 WORKSHEET 3 Time of Concentration or Travel Time Project : Beach Cove Location: PRE -2 By : DLP Checked: Date 8-3-04 Date Circle One:, .Present Developed Circle One: Tc Tt through subarea Notes: Space for as many as two segments per flow type can be used for each worksheet. Inlcude a map, schematic, or description of flow segments. SHEET FLOW (Applicable to Tc only) Segment ID A -B 1. Surface Description (table 3-1) .............. grass/sand 2. Manning's roughness coeff.,n (table 3-1)...... .24 0. 3. Flow Length, L (total L <= 300 ft) .......... ft 300 4. Two -yr 24 -hr rainfall, P2 ................... in 5.2 0. 5. Land slope ,s ............................... ft/ft 0.02- 0. 6. Tt = 0.007(nL)^.8/P2^.5 s^.4 Compute Tt.... hr 0.4493 0. 0.4493 SHALLOW CONCENTRATED FLOW Segment ID B -C 7. Surface Description (paved or unpaved) ....... grass/sand 8. Flow Length, L .............................. ft 540 9. Watercourse Slope, s ........................ ft/ft 0.02 0. 10. Average Velocity, v (from figure) ............ft/s 2.1 0. 11. Tt = L/(3600V) Compute Tt.... hr 0.0714 0. 0.0714 CHANNEL FLOW Segment ID 12. Cross Sectional Flow Area, ................. ft^2 0. 0. 13. Wetted Perimeter, Pw ......................... ft , 14. Hydraulic Radius r = a/Pw ................... ft 15. Channel Slope, s ............................ ft/ft 0. 0. 16. Manning's roughness coeff.,n ............... 0. 17. V=1.49 r^2/3 s^1/2 / n Compute V ..........ft/s 0. 0. 18. Flow Length, L .............................. ft 19. Tt = L/(3600V) Compute Tt.... hr 0. 0. 0. 20. Watershed or subarea Tc or Tt .add Tc in steps 6,11, and 19 hr 0.521 i 31 go M r r r r OR TR -55 WORKSHEET 3 Time of Concentration or Travel Time Project : Beach Cove Location: PRE -3 By : DLP Checked: Date 8-3-04 Date M A so _OR M Circle One: Present Developed Circle One: Tc Tt through subarea Notes: Space for as many as two segments per flow type can be used for each M worksheet. Inlcude a map, schematic, or description of flow segments. SHEET FLOW (Applicable to Tc only) Segment ID A -B M 1. Surface Description (table 3-1) .............. grass/sand 2. Manning's roughness coeff.,n (table 3-1)...... .24 0, 3. Flow Length, L (total L <= 300 ft) .......... ft 300 4. Two -yr 24 -hr rainfall, P2 ................... in 5.2 0. 5. Land slope ,s...............................£t/ft 0.022 0. 6. Tt = 0.007(nL)^.8/P2^.5 s^.4 Compute Tt.... hr 0.4325 0. 0.4325 SHALLOW CONCENTRATED FLOW Segment ID 7. Surface Description (paved or unpaved) ....... 8. Flow Length, L .............................. ft 9. Watercourse Slope, s ........................ ft/ft 0. 0. 10. Average Velocity, v (from figure) ............ft/s 0. 0. 11. Tt - L/(3600V) Compute Tt.... hr 0. 0. 0. CHANNEL FLOW Segment ID 12. Cross Sectional Flow Area, ................. ft^2 0. 0. 13. Wetted Perimeter, Pw ......................... ft ^14. Hydraulic Radius r = a/Pw ................... ft 15. Channel Slope, s ............................ ft/ft 0. 0. 16. Manning's roughness coeff.,n ............... 0, 17. V=1.49 r^2/3 s^1/2 / n Compute V ..........ft/s 0. 0. 18. Flow Length, L .............................. ft X19. Tt = L/(3600V) Compute Tt.... hr 0. 0. 0. 20. Watershed or subarea Tc or Tt .add Tc in steps 6,11, and 19 hr 0.433 ZS.98 M A so _OR M TR -55 WORKSHEET 3 Time of Concentration or Travel Time Project : Beach Cove By : DLP Date 8-3-04 Location: PRE -4 Checked: Date Circle One:-Presen Developed Circle One: Tc Tt through subarea Notes: Space for as many as two segments per flow type can be used for each worksheet. - Inlcude a map, schematic, or description of flow segments. SHEET FLOW (Applicable to Tc only) Segment ID A -B 1. Surface Description (table 3-1) .............. grass/sand - 2. Manning's roughness coeff.,n (table 3-1)...... .24 0. 3. Flow Length, L (total L <- 300 ft) .......... ft 300 4. Two -yr 24 -hr rainfall, P2 ................... in 5.2 0. 5. Land slope ,s ............................... ft/ft 0.0093 0. 6. Tt = 0.007(nW .8/P2^.5 s^.4 Compute Tt.... hr 0.6103 0. oft 0.6103 SHALLOW CONCENTRATED FLOW Segment ID B -C - 7. Surface Description (paved or unpaved) ....... grass/sand B. Flow Length, L .............................. ft 1100 9. Watercourse Slope, s ........................ ft/ft 0.0093 0. 10. Average Velocity, v (from figure) ........ .... £t/s 1.5 0. 11. Tt = L/(3600V) Compute Tt.... hr 0.2037 0. 0.2037 CHANNEL FLOW Segment ID 12. Cross Sectional Flow Area, ................. ft^2 0. 0. 13. Wetted Perimeter, Pw ......................... ft 14. Hydraulic Radius r = a/Pw ................... ft 15. Channel Slope, s ............................ ft/ft 0. 0. 16. Manning's roughness coeff.,n ............... 0, 17. V=1.49 r^2/3 s^1/2 / n Compute V ..........ft/s 0. 0. 18. Flow Length, L .............................. ft 19. Tt = L/(3600V) Compute Tt.... hr 0. 0. 0. 20. Watershed or subarea Tc or Tt .add Tc in steps 6,11, and 19 hr 0.814 ti N8 M,.r 0* - - BEACH COVE (PRE -1) DRAINAGE AREA (Pre -Development) Stage / Storage Computations Begin Stage Calculations = End Stage Calculations = Calculation Increment = Dry Retention Side Slopes Dry 0.380 Retention Acres = 0.290 Low Rng = 28.00 High Rng = 39.00 BEACH COVE (PRE -1) DRAINAGE AREA (Pre -Development) Stage / Storage Computations Begin Stage Calculations = End Stage Calculations = Calculation Increment = Dry Retention Side Slopes Pavement 0.380 1.050 28.00 30.00 29.50 38.30 28.0 NGVD 39.0 NGVD 0.5 ft Green Space Acres 4.840 Total Area = 6.560 27.00 37.00 28.0 0.00 0.29 0.00 Total Vertical Vertical Linear Linear Linear Linear Linear Linear Cumulative. Total Stage Storage Area Storage Area Storage Area Storage Area Storage Area 28.0 0.00 0.29 0.00 0.01 0.00 0.00 0.24 0.48 0.24 0.78 28.5 0.15 0.29 0.03 0.13 0.00 0.00 0.54 0.73 0.72 1.14 29.0 0.29 0.29 0.13 0.25 0.00 0.00 0.97 0.97 1.38 1.51 29.5 0.44 0.29 0.29 0.38 0.00 0.00 1.51 1.21 2.23 1.88 30.0 0.58 029 0.48 0.38 0.00 0.01 2.18 1.45 3.23 2.13 30.5 0.73 0.29 0.67 0.38 0.02 0.06 2.96 1.69 4.37 2.43 31.0 0.87 0.29 0.86 0.38 0.06 0.13 3.87 1.94 5.66 2.73 31.5 1.02 0.29 1.05 0.38 0.14 0.19 4.90 2.18 7.10 3.04 32.0 1.16 0.29 1.24 0.38 0.25 0.25 6.05 2.42 8.70 3.34 32.5 1.31 0.29 1.43 0.38 0.40 0.32 7.32 -2.66 10.45 3.65 33.0 1.45 0.29 1.62 0.38 0.57 0.38 8.71 2.90 12.35 3.95 33.5 1.60 0.29 1.81 0.38 0.77 0.44 10.22 3.15 14.40 4.26 34.0 1.74 0.29 2.00 0.38 1.01 0.51 11.86 3.39 16.61 4.56 34.5 1.89 0.29 2.19 0.38 1.28 0.57 13.61 3.63 18.96 4.87 35.0 2.03 0.29 2.38 0.38 1.58 0.63 15.49 3.87 21.47 5.17 35.5 2.18 0.29 2.57 0.38 1.91 0.70 17.48 4.11 24.14 5.48 36.0 2.32 0.29 2.76 0.38 2.28 0.76 19.60 4.36 26.95 5.79 36.5 2.47 0.29 2.95 0.38 2.67 0.82 21.84 4.60 29.92 6.09 37.0 2.61 0.29 3.14 0.38 3.10 0.89 24.20 4.84 33.04 6.40 37.5 2.76 0.29 3.33 0.38 3.56 0.95 26.62 4.84 36.26 6.46 38.0 2.90 0.29 3.52 0.38 4.05 1.01 29.04 4.84 39.50 6.52 38.5 3.05 0.29 3.71 0.38 4.57 1.05 31.46 4.84 42.78 6.56 39.0 3.19 0.29 3.90 0.38 5.10 1.05 33.88 4.84 46.06 6.56 8rarz0Ua Mi bseLS RE -1 S cvs. Stas WaAs�eol: PRE -1 SW vs. SlanBe BEACH COVE (PRE -2) DRAINAGE AREA (Pre -Development) Stage / Storage Computations Begin Stage Calculations = 19.0 NGVD End Stage Calculations = 39.0 NGVD Calculation Increment = 0.5 ft 19.5 0.39 Grass parking 0.00 0.00 0.00 0.00 0.00 Wetland Area Pavement Green Space 20.0 Acres Acres = 0.770 0.330 0.920 4.510 Total Area = 6.530 Low Rng = 19.00 21.00 21.00 20.00 0.77 0.00 High Rng = 39.00 22.50 38.30 37.00 1.19 0.90 21.0 1.54 0.77 0.00 0.01 _ 0.01 0.13 0.27 1.67 1.06 Total 21.5 1.93 Vertical Vertical Linear Linear Linear Linear Linear Linear Cumulative. Total Stage Storage Area Storage Area Storage Area Storage Area Storage Area 19.5 0.39 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.77 20.0 0.77 0.77 0.00 0.00 0.00 0.00 0.00 0.01 0.77 0.78 20.5 1.16 0.77 0.00 0.00 0.00 0.00 0.03 0.13 1.19 0.90 21.0 1.54 0.77 0.00 0.01 0.00 0.01 0.13 0.27 1.67 1.06 21.5 1.93 0.77 0.03 0.11 0.01 0.03 0.30 0.40 2.26 1.30 22.0 2.31 0.77 0.11 0.22 0.03 0.05 0.53 0.53 2.98 1.57 22.5 2.70 0.77 0.25 0.33 0.06 0.08 0.83 0.66 3.83 1.84 23.0 3.08 0.77 0.41 0.33 0.11 0.11 1.19 0.80 4.79 2.00 23.5 3.47 0.77 0.58 0.33 0.17 0.13 1.62 0.93 5.83 2.16 24.0 3.85 0.77 0.74 0.33 0.24 0.16 2.12 1.06 6.95 2.32 24.5 4.24 0.77 0.91 0.33 0.33 0.19 2.69 1.19 8.15 2.48 25.0 4.62 0.77 1.07 0.33 0.43 0.21 3.32 1.33 9.43 2.64 25.5 5.01 0.77 1.24 0.33 0.54 0.24 4.01 1.46 10.79 2.80 26.0 5.39 0.77 1.40 0.33 0.66 0.27 4.78 1.59 12.23 2.96 26.5 5.78 0.77 1.57 0.33 0.80 0.29 5.60 1.72 13.75 3.12 .. 27.0 6.16 0.77 1.73 0.33 0.96 0.32 6.50 1.86 15.35 3.28 27.5 6.55 0.77 1.90 0.33 1.12 0.35 7.46 1.99 17.03 3.44 28.0 6.93 0.77 2.06 0.33 1.30 0.37 8.49 2.12 18.78 3.59 28.5 7.32 0.77 2.23 0.33 1.50 0.40 9.58 2.26 20.62 3.75 _ 29.0 7.70 0.77 2.39 0.33 1.70 0.43 10.74 2.39 22.54 3.91 29.5 8.09 0.77 2.56 0.33 1.92 0.45 11.97 2.52 24.53 4.07 30.0 8.47 0.77 2.72 0.33 2.15 0.48 13.26 2.65 26.61 4.23 30.5 8.86 0.77 2.89 0.33 2.40 0.51 14.62 2.79 28.77 4.39 31.0 9.24 0.77 3.05 0.33 2.66 0.53 16.05 2.92 31.00 4.55 31.5 9.63 0.77 3.22 0.33 2.93 0.56 17.54 3.05 33.32 4.71 32.0 10.01 0.77 3.38 0.33 3.22 0.58 19.10 3.18 35.71 4.87 32.5 10.40 0.77 3.55 0.33 3.52 0.61 20.73 3.32 38.19 5.03 33.0 10.78 0.77 3.71 0.33 3.83 0.64 22.42 3.45 40.74 5.19 33.5 11.17 0.77 3.88 0.33 4.15 0.66 24.17 3.58 43.37 5.35 34.0 11.55 0.77 4.04 0.33 4.49 0.69 26.00 3.71 46.08 5.51 34.5 11.94 0.77 4.21 0.33 4.85 0.72 27.89 3.85 48.88 5.66 35.0 12.32 0.77 4.37 0.33 5.21 0.74 29.85 3.98 51.75 5.82 35.5 12.71 0.77 4.54 0.33 5.59 0.77 31.87 4.11 54.70 5.98 36.0 13.09 0.77 4.70 0.33 5.98 0.80 33.96 4.24 57.73 6.14 36.5 13.48 0.77 4.87 0.33 6.39 0.82 36.11 4.38 60.84 6.30 37.0 13.86 0.77 5.03 0.33 6.81 0.85 38.34 4.51 64.03 6.46 37.5 14.25 0.77 5.20 0.33 7.24 0.88 40.59 4.51 67.27 6.49 38.0 14.63 0.77 5.36 0.33 7.68 0.90 42.85 4.51 70.52 6.51 38.5 15.02 0.77 5.53 0.33 8.14 0.92 45.10 4.51 73.79 6.53 39.0 15.40 0.77 5.69 0.33 8.60 0.92 47.36 4.51 77.05 6.53 IMM Re: 99-79-SWMSCeiw S Int WorkNeet PRE -2 Sb n. Storage 29.0 BEACH COVE (PRE -3) 0.00 DRAINAGE AREA (Pre -Development) 0.00 Stage I Storage Computations 0.00 Begin Stage Calculations = 29.0 NGVD 0.00 End Stage Calculations = 38.0 NGVD 30.0 Calculation Increment= 0.5 ft 0.00 Pavement Green Space Acres Acres = 0.280 1.490 Total Area = 1.770 Low Rng = 29.80 30.00 0.11 High Rng = 36.50 37.00 31.0 0.03 0.05 Total 0.21 Linear Linear Linear Linear Cumulative. Total _ Stage Storage Area Storage Area Storage Area 29.0 0.00 0.00 0.00 0.00 0.00 0.00 29.5 0.00 0.00 0.00 0.00 0.00 0.00 30.0 0.00 0.01 0.00 0.01 0.00 0.02 30.5 0.01 0.03 0.03 0.11 0.04 0.14 31.0 0.03 0.05 0.11 0.21 0.14 0.26 31.5 0.06 0.07 0.24 0.32 0.30 0.39 32.0 0.10 0.09 0.43 0.43 0.53 0.52 32.5 0.15 0.11 0.67 0.53 0.82 0.64 33.0 0.21 0.13 0.96 0.64 1.17 0.77 33.5 0.29 0.15 1.30 0.75 1.59 0.90 34.0 0.37 0.18 1.70 0.85 2.07 1.03 34.5 0.46 0.20 2.16 0.96 2.62 1.15 35.0 0.57 0.22 2.66 1.06 3.23 1.28 35.5 0.68 0.24 3.22 1.17 3.90 1.41 36.0 0.80 0.26 3.83 1.28 4.63 1.54 A 36.5 0.94 0.28 4.50 1.38 5.43 1.66 37.0 1.08 0.28 5.22 1.49 6.29 1.77 37.5 1.22 0.28 5.96 1.49 7.18 1.77 38.0 1.36 0.28 6.71 1.49 8.06 1.77 mow Foo: ee PRE -3 Slts is WohiM1eeL PREJ Stp vsStmge BEACH COVE (PRE -4) DRAINAGE AREA (Pre -Development) Stage / Storage Computations Begin Stage Calculations = 19.0 NGVD End Stage Calculations = 38.0 NGVD - Calculation Increment= 0.5 ft ea M Flee: 99.7 WMSCalensLs Woftheo PFE4St9 n. Swage Pavement Green Space Acres - Acres = 0.000 13.470 Total Area = 13.470 Low Rng = 19.00 19.00 High Rng = 19.00 36.00 - Total Linear Linear Linear Linear Cumulative. Total Stage Storage Area Storage Area Storage Area ^ (NGVD) (ac.ft.) (ac.) (ac.ft.) (ac.) (ac.ft.) (ac.) 19.0 0.00 0.01 0.00 0.01 0.00 0.02 19.5 0.00 0.00 0.10 0.40 0.10 0.40 20.0 0.00 0.00 0.40 0.79 0.40 0.79 ^ 20.5 0.00 0.00 0.89 1.19 0.89 1.19 21.0 0.00 0.00 1.58 1.58 1.58 1.58 21.5 0.00 0.00 2.48 1.98 2.48 1.98 ^ 22.0 0.00 0.00 3.57 2.38 3.57 2.38 22.5 0.00 0.00 4.85 2.77 4.85 2.77 23.0 0.00 0.00 6.34 3.17 6.34 3.17 23.5 0.00 0.00 8.02 3.57 8.02 3.57 24.0 0.00 0.00 9.90 3.96 9.90 3.96 24.5 0.00 0.00 11.98 4.36 11.98 4.36 25.0 0.00 0.00 14.26 4.75 14.26 4.75 - 25.5 0.00 0.00 16.74 5.15 16.74 5.15 26.0 0.00 0.00 19.41 5.55 19.41 5.55 26.5 0.00 0.00 22.28 5.94 22.28 5.94 27.0 0.00 0.00 25.36 6.34 25.36 6.34 27.5 0.00 0.00 28.62 6.74 28.62 6.74 28.0 0.00 0.00 32.09 7.13 32.09 7.13 ^ 28.5 0.00 0.00 35.75 7.53 35.75 7.53 29.0 0.00 0.00 39.62 7.92 39.62 7.92 29.5 0.00 0.00 43.68 8.32 43.68 8.32 30.0 0.00 0.00 47.94 8.72 47.94 8.72 ^ 30.5 0.00 0.00 52.39 9.11 52.39 9.11 31.0 0.00 0.00 57.05 9.51 57.05 9.51 31.5 0.00 0.00 61.90 9.90 61.90 9.90 ^ 32.0 0.00 0.00 66.95 10.30 66.95 10.30 32.5 0.00 0.00 72.20 10.70 72.20 10.70 33.0 0.00 0.00 77.65 11.09 77.65 11.09 33.5 0.00 0.00 83.30 11.49 83.30 11.49 - 34.0 0.00 0.00 89.14 11.89 89.14 11.89 34.5 0.00 0.00 95.18 12.28 95.18 12.28 35.0 0.00 0.00 101.42 12.68 101.42 12.68 - 35.5 0.00 0.00 107.86 13.07 107.86 13.07 36.0 0.00 0.00 114.50 13.47 114.50 13.47 36.5 0.00 0.00 121.23 13.47 121.23 13.47 ^ 37.0 0.00 0.00 127.97 13.47 127.97 13.47 37.5 0.00 0.00 134.70 13.47 134.70 13.47 38.0 0.00 0.00 141.44 13.47 141.44 13.47 ea M Flee: 99.7 WMSCalensLs Woftheo PFE4St9 n. Swage Post -Development Support Data so m IIIIIIIII doi low 00 w gli In OR i� L i t -+--+--�----�----- ---�-- ----------------------- — — — — Beach Cove Basin Summary (Post -Development Conditions) August 3, 2004 Name: DB -1 DB -2 DB -3 DB -4 DB -5 Group: BASE BASE BASE BASE BASE Simulation: 10 YR 24 RR 10 YR 24 NR 10 YR 24 HR 10 YR 24 HR 10 YR 24 HR Node DB-ISITE DB-25ITE DB-3SITE DB-4SITE DB-5SITE TYpe: SB 5S SB SB so Spec Time Inc(min(: 15.00 15.00 15.00 15.00 15.00 Comp Time Inc (min): 15.00 15.00 15.00 15.00 15.00 Rain File: Flood Fiend Flmod Flmod Flmod Rain Amount(in(: '-BOO 7.800 0.800 7.800 7.500 Daration(hrs(: 24.00 24.00 24.00 24.00 24.00 Status: onsite onsite Onsite Onsite onsite TC(min): 29.DO 31.00 26.00 22.OD 83.00 Time Shift(hrs): 0.00 0.00 0.00 0.00 0.00 Area(aC): 7.770 8.180 2.230 8.070 5.400 Curve N. 62.000 63.000 59.000 72.000 62.000 DCIA(8): 0.000 0.000 O.ODO 0.000 0.000 Time Max(hrs): 12.00 12.00 12.00 12.00 12.25 Flow Max(cfs): 12.531 13.227 3.373 19.947 4.580 Runoff Volume(in): 3.402 3.512 3.076 4.519 3.402 Runoff Volame(ft3): 95961.036 104286.666 24898.081 132391.559 66691.581 Name: DB -1 DB -2 DB -3 DB -4 DS -5 Group: BASE BASE BASE RASE BASE Simulation: 100 YR 24 HR 100 YR 24 HR 100 YR 24 RR 100 YR 24 HR 100 YR 24 HR Node: DB-3SITE DB-25ITE 08-3SITE DB-4SITE DB-5SITE Type: SB SB SB SB SB Spec Time Inc(min): 15.00 15.00 15.00 15.00 15.00 Comp Time InC(min(: 15.00 15.00 15.00 15.00 15.00 Rain File: Flood Flood Flood Flmod Flood Rain Amouat(in): 12.200 12.200 12.200 12.200 12.200 Duration(hrs(: 24.00 24.00 24.00 24.00 24.00 Status: Onsite Onsite Onsite Onsite Onsite TC(sdn): 29.00 31.00 26.00 22.00 83.00 Time Shlft(hrs): 0.00 0.00 0.00 0.00 0.00 Area(ac(: 7.770 8.180 2.230 8.070 5.400 Curve Num: 62.000 63.000 59.000 72.000 62.000 MIA(%): 0.000 0.000 0.000 0.000 0.000 Time Hax(hrs(: 12.00 12.00 12.00 12.00 12.25 Flow Max(cfs(: 26.633 27.767 1.483 37.247 10.042 Runoff Volume(Sn): 7.042 7.194 6.580 8.521 7.042 Runoff Volume(ft3): 198607.123 213600.567 53265.991 249617.270 138028.081 Name: DB -1 DB -2 DB -3 DB -4 DB -5 Group: RASE RASE BASE BASE BASE Simulation: 25 YR 24 BR 25 YR 24 BE 25 YR 24 RR 25 YR 24 HR 25 YR 24 l01 Node: DB-5SITE DB-25ITE DB-3SITE DB-4SITE DB-5SITE Type: SS SB SB SB 58 Spec Time Inc (.is): 15.00- 15.00 15.00 15.00 15.00 Covin Time Inc(min): 15.00 15.DO 15.00 15.00 15.00 Rain File: Fired Flmod Fl od Fixed Flood Rain Amount(in(: 9.300 9.300 9.300 9.300 9.300 Ducation(hrs): 24.00 24.00 24.00 24.00 24.00 Status: Onsite Onsite Onsite Onsite Onsite TC(min): 29.00 31.00 26.00 22.00 83.00 Time 3hift(hrs): 0.00 0.00 0.00 0.00 0.00 Area (so): 7.770 8.180 2.230 8.070 5.400 Curve Num: 62.000 63.000 59.000 72.000 62.000 MIA(%): 0.000 0.000 0.000 O. ODO 0.000 Time Max(hrs): 12.00 12.00 12.00 12.00 12.25 Flow Max(cfs): 17.173 18.024 4.715 25.786 6.438 Runoff Volume(in): 4.590 4.716 4.211 5.852 4.590 Runoff Volume(ft3): 129460.989 140045.855 34086.622 171425.405 89972.853 Name: DB -1 DB -2 DS -3 OB -4 DB -5 Group: BASE BASE BASE BASE BASE Simulation: NEAN ANNUAL FEAN ANNUAL MEAN ANNUAL MEAN ANNUAL NEAN ANNBIL Node: DB-3SITE DB-25ITE OB-35ITE DB-4SITE DB-5SITE Type: SB Be EB 50 SB Spec Time Inc(min): 15.00 15.00 15.00 15.00 15.00 Comp Time Inc(min): 15.00 15.00 15.00 15.00 15.00 Rain File: Flmad Flood Flood Fixed Fined Rain Amount(in): 4.800 4.800 4.800 4.800 4.800 Duration(hrs): 24.00 24.00 24.00 24.00 24.00 status: onsite Onsite Onsite Onsite Onsite TC(mic): 29.00 31.00 26.00 22.00 83.00 Time Shift(hrs): 0.00 0.00 0.00 0.00 0.00 Area(aci: 7.770 8.180 2.230 8.070 5.400 CULVe.Num:.62_DOD 63.000 59.000 72.000 62.000 OCIA(8(: O.ODO 0.000 0.000 0.000 0.000 Time Max(hrs): 12.00 12.00 12.00 12.00 12.25 Flow Max(cfs): 4.306 4.671 1.048 8.842 1.603 Runoff Volume (in): 1.317 1.384 1.123 2.045 1.317 Aunoff Volume(ft3): 37133.636 41088.460 9087.231 59906.610 25807.121 D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page I of 1 -- 4141 A� 4-A mJ J 0.6 r sft M 0.6 mW i OR TR -55 WORKSHEET 3 Time of Concentration or Travel Time Project : Beach Cove Location: DB -4 Circle One: P esentevelo ed Circle One: Tc Tt throughsubarea By : DLP Checked: Date 8-3-04 Date Notes: Space for as many as two segments per flow type can be used for each worksheet. Inlcude a map, schematic, or description of flow segments. SHEET FLOW (Applicable to To only) Segment ID A -B 1. Surface Description (table 3-1) .............. grass/pvmt ow 2. Manning's roughness coeff.,n (table 3-1)...... .1 3. Flow Length, L (total L <= 300 ft) .......... ft 300 4. Two -yr 24 -hr rainfall, P2................... in 5.2 5. Land slope ,s ............................... ft/ft 0.01 . 6. Tt - 0.007(nL)^.8/P2^.5 s^.4 Compute Tt.... hr 0.2943 SHALLOW CONCENTRATED FLOW Segment ID B -C 7. Surface Description (paved or unpaved) ....... grass/pvmt 8. Flow Eength, L .............................. ft 490 9. Watercourse Slope, s ........................ ft/ft 0.01 10. Average Velocity, v (from figure) ............ ft/s 1.8 11. Tt = L/(360OV) Compute Tt.... hr 0.0756 CHANNEL FLOW Segment ID 12. Cross Sectional Flow Area, ................. ft^2 0. 13. Wetted Perimeter, Pw ......................... ft ,14. Hydraulic Radius r - a/Pw ................... ft 0015. Channel Slope, s ............................ ft/ft 0. 16. Manning's roughness coeff.,n ............... 17. V=1.49 r12/3 s^1/2 / n Compute V ..........ft/s 0. 18. Flow Length, L .............................. ft 4.419. Tt - L/(360OV) Compute Tt.... hr 0. 20. Watershed or subarea Tc or Tt .add Tc in steps 6,11, and 19 Gl w _010 M 7 0. 0. 0. 0.2943 0. 0. 0. 0.0756 0. 0. 0. 0. 0. 0. hr 0.37 TR -55 WORKSHEET 3 Time of Concentration or Travel Time Project : Beach Cove By : DLP Date : 8-3-04 Location: DB -5 Checked: Date : Circle One: Bxe.cent" Develo ed Circle One: Tc Tt throug su area Notes: Space for as many as two segments per flow type can be used for each worksheet. Inlcude a map, schematic, or description of flow segments. SHEET FLOW (Applicable to To only) Segment ID A -B 1. Surface Description (table 3-1) .............. grass 2. Manning's roughness coeff.,n (table 3-1)...... .24 3. Flow Length, L (total L <= 300 ft) .......... ft 300 4. Two -yr 24 -hr rainfall, P2 ................... in 5.2 5. Land slope ,s ............................... ft/£t 0.003 6. Tt = 0.007(nL)^.8/P2^.5 s^.4 Compute Tt.... hr 0.9597 SHALLOW CONCENTRATED FLOW Segment ID B -C 7. Surface Description (paved or unpaved) ....... grass 8. Flow Length, L ...............:.............. £t 1500 9. Watercourse Slope, s ........................ ft/ft 0.003 10. Average Velocity, v (from figure) ............ft/s 1. 11. Tt = L/(3600V) Compute Tt.... hr 0.4167 CHANNEL FLOW Segment ID 12. Cross Sectional Flow Area, ................ ft^2 0. 13., Wetted Perimeter, Pw ......................... ft 14. Hydraulic Radius r = a/Pw ................... ft 15. Channel Slope, s ............................ ft/ft 0. 16. Manning's roughness coeff.,n ............... 17. V=1.49 r^2/3 s^1/2 / n Compute V ..........ft/s 0. 18. Flow Length, L .............................. ft 19. Tt = L/(3600V) Compute Tt.... hr 0. 20. Watershed or subarea To or Tt .add To in steps 6,11, and 19 0 0. 0. 0. 0.9597 0. 0. 0. 0.4167 0. 0. 0. 0. 0. 0. hr 1.376 ^ 83 /h," Wi J J 0.4 ..i r� wi t BEACH COVE (DB -1) DRAINAGE AREA (Post -Development) Stage / Storage Computations Begin Stage Calculations = End Stage Calculations = Calculation Increment = Dry Retention Side Slopes Dry 0.480 Retention Acres = 0.150 Low Rng = 26.00 High Rng = 39.00 BEACH COVE (DB -1) DRAINAGE AREA (Post -Development) Stage / Storage Computations Begin Stage Calculations = End Stage Calculations = Calculation Increment = Dry Retention Side Slopes Pavement 0.480 1.640 26.00 30.00 29.50 38.30 26.0 NGVD 39.0 NGVD 0.5 ft Green Space Acres 4.070 Total Area = 6.340 27.00 37.00 Total "" Vertical Vertical Linear Linear Linear Linear Linear Linear Cumulative. Total Stage Storage Area Storage Area Storage Area Storage Area Storage Area I... 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 0.00 0.08 0.15 0.23 0.30 0.38 0.45 0.53 0.60 0.68 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.00 0.02 0.07 0.15 0.27 0.43 0.62 0.84 1.08 1.32 0.01 0.07 0.14 0.21 0.27 0.34 0.41 _ 0.48 0.48 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10 0.00 0.00 0.00 0.05 0.20 0.46 0.81 1.27 1.83 2.49 0.00 0.00 0.01 0.20 0.41 0.61 0.81 1.02 1.22 1.42 0.00 0.09 0.22 0.43 0.78 1.26 1.88 2.64 3.51 4.51 0.16 0.22 0.30 0.56 0.83 1.10 1.38 1.65 1.86 2.15 4. S9 31.0 0.75 0.15 1.56 0.48 0.10 0.20 3.26 1.63 5.66 2.46 A�•Ri 31.5 0.83 0.15 1.80 0.48 0.22 .0.30 4.12 1.83 6.97 2.76 32.0 0.90 0.15 2.04 0.48 0.40 0.40 5.09 2.04 8.42 3.06 .. 32.5 0.98 0.15 2.28 0.48 0.62 0.49 6.16 2.24 10.03 3.36 33.0 1.05 0.15 2.52 0.48 0.89 0.59 7.33 2.44 11.79 3.66 33.5 1.13 0.15 2.76 0.48 1.21 0.69 8.60 2.65 13.69 3.97 34.0 1.20 0.15 3.00 0.48 1.58 0.79 9.97 2.85 15.75 4.27 34.5 1.28 0.15 3.24 0.48 2.00 0.89 11.45 3.05 17.96 4.57 35.0 1.35 0.15 3.48 0.48 2.47 0.99 13.02 3.26 • 20.32 4.87 35.5 1.43 0.15 3.72 0.48 2.99 1.09 14.70 3.46 22.84 5.18 36.0 1.50 0.15 3.96 0.48 3.56 1.19 16.48 3.66 25.50 5.48 36.5 1.58 0.15 4.20 0.48 4.17 1.28 18.37 3.87 28.31 5.78 37.0 1.65 0.15 4.44 0.48 4.84 1.38 20.35 4.07 31.28 6.08 In 37.5 1.73 0.15 4.68 0.48 5.56 1.48 22.39 4.07 34.35 6.18 38.0 1.80 0.15 4.92 0.48 6.32 1.58 24.42 4.07 37.46 6.28 38.5 1.88 0.15 5.16 0.48 7.14 1.64 26.46 4.07 40.63 6.34 39,0 "1.95 0.15 5.40 0.48 7.96 1.64 28.49 4.07 43.80 6.34 A+t»• F. RE, PC& too If- 2-1"a (zeac OIicHAM1p2) .tom O 4-59 Rc.FTtaoYrt /aNHR d 4.59-4.Si - X-30.5 M 5.66 -4.s1 31.o_3e.r 9 9i eM File S C ts#sssW.x.oc o8.1 a". smreee 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 0.00 0.39 0.77 1.16 1.54 1.93 2.31 2.70 BEACH COVE (DB.2) 0.00 0.00 0.00 0.00 0.00 0.03 0.11 0.25 0.00 0.00 0.00 0.00 0.01 0.11 0.22 0.33 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.08 0.00 0.00 0.00 0.03 0.13 0.30 0.53 0.83 DRAINAGE AREA (Post -Development) 0.00 0.39 0.77 1.19 1.67 2.26 2.98 3.83 0.77 0.77 0.78 0.90 1.06 1.30 1.57 1.84 ti 4.66 23.0 3.08 Stage / Storage Computations 0.41 0.33 eee 0.11 1.19 Begin Stage Calculations = 19.0 NGVD 2.00 At- 23.5 3.47 End Stage Calculations = 39.0 NGVD 0.33 0.17 0.13 1.62 Calculation Increment= 0.5 ft 2.16 24.0 3.85 Grass parking 0.74 0.33 0.24 0.16 Wetland Area Pavement Green Space 2.32 Acres Acres = 0.770 0.330 0.920 4.510 Total Area = 6.530 Low Ring = 19.00 21.00 21.00 20.00 2.48 High Rng = 39.00 22.50 38.30 37.00 0.33 0.43 0.21 3.32 1.33 9.43 Total 25.5 Vertical _Vertical Linear Linear Linear Linear Linear Linear Cumulative. Total Stage Storage .Area Storage Area Storage Area Storage Area Storage Area ,y 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 0.00 0.39 0.77 1.16 1.54 1.93 2.31 2.70 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.00 0.00 0.00 0.00 0.00 0.03 0.11 0.25 0.00 0.00 0.00 0.00 0.01 0.11 0.22 0.33 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.00 0.00 0.00 0.00 0.01 0.03 0.05 0.08 0.00 0.00 0.00 0.03 0.13 0.30 0.53 0.83 0.00 0.00 0.01 0.13 0.27 0.40 0.53 0.66 0.00 0.39 0.77 1.19 1.67 2.26 2.98 3.83 0.77 0.77 0.78 0.90 1.06 1.30 1.57 1.84 ti 4.66 23.0 3.08 0.77 0.41 0.33 0.11 0.11 1.19 0.80 4.79 2.00 At- 23.5 3.47 0.77 0.58 0.33 0.17 0.13 1.62 0.93 5.83 2.16 24.0 3.85 0.77 0.74 0.33 0.24 0.16 2.12 1.06 6.95 2.32 24.5 4.24 0.77 0.91 0.33 0.33 0.19 2.69 1.19 8.15 2.48 25.0 4.62 0.77 1.07 0.33 0.43 0.21 3.32 1.33 9.43 2.64 25.5 .5.01 0.77 1.24 0.33 0.54 0.24 4.01 1.46 10.79 2.80 26.0 5.39 0.77 1.40 0.33 0.66 0.27 4.78 1.59 12.23 2.96 26.5 5.78 0.77 1.57 0.33 0.80 0.29 5.60 1.72 13.75 3.12 .y 27.0 6.16 0.77 1.73 0.33 0.96 0.32 6.50 1.86 15.35 3.28 27.5 6.55 0.77 1.90 0.33 1.12 0.35 7.46 1.99 17.03 3.44 28.0 6.93 0.77 2.06 0.33 1.30 0.37 8.49 2.12 18.78 3.59 28.5 7.32 0.77 2.23 0.33 1.50 0.40 9.58 2.26 20.62 3.75 29.0 7.70 0.77 2.39 0.33 1.70 0.43 10.74 2.39 22.54 3.91 29.5 8.09 0:77 2.56 0.33 1.92 0.45 11.97 2.52 24.53 4.07 30.0 8.47 0.77 2.72 0.33 2.15 0.48 13.26 2.65 26.61 4.23 ^ 30.5 8.86 0.77 2.89 0.33 2.40 0.51 14.62 2.79 28.77 4.39 31.0 9.24 0.77 3.05 0.33 2.66 0.53 16.05 2.92 31.00 4.55 31.5 9.63 0.77 3.22 0.33 2.93 0.56 17.54 3.05 33.32 4.71 32.0 10.01 0.77 3.38 0.33 3.22 0.58 19.10 3.18 35.71 4.87 32.5 10.40 0.77 3.55 0.33 3.52 0.61 20.73 3.32 38.19 5.03 33.0 .10.78 0.77 3.7.1 .0.33 .3.83 0.64 22.42 3.45 40.74 5.19 33.5 11.17 0.77 3.88 0.33 4.15 0.66 24.17 3.58 43.37 5.35 ^ 34.0 11.55 0.77 4.04 0.33 4.49 0.69 26.00 3.71 46.08 5.51 34.5 11.94 0.77 4.21 0.33 4.85 0.72 27.89 3.85 48.88 5.66 35.0 12.32 0.77 4.37 0.33 5.21 0.74 29.85 3.98 51.75 5.82 35.5 12.71 0.77 4.54 0.33 5.59 0.77 31.87 4.11 54.70 5.98 36.0 13.09 0.77 4.70 0.33 5.98 0.80 33.96 4.24 57.73 6.14 36.5 13.48 0.77 4.87 0.33 6.39 0.82 36.11 4.38 60.84 6.30 37.0 13.86 0.77 5.03 0.33 6.81 0.85 38.34 4.51 64.03 6.46 37.5 14.25 0.77 5.20 0.33 7.24 0.88 40.59 4.51 67.27 6.49 38.0 14.63 0.77 5.36 0.33 7.68 0.90 42.85 4.51 70.52 6.51 38.5 15.02 0.77 5.53 0.33 8.14 0.92 45.10 4.51 73.79 6.53 39.0 15.40 0.77 5.69 0.33 8.60 0.92 47.36 4.51 77.05 6.53 Ml+ I m'". F•F.d ba-me m%%% eo AJ 22.91 ' NLlvo File : 9373SNM W= Asda . ^ wor"heee D92 sig r. smngo 62) 5""CF T"15 QAJw 15 Phu oleo i0 P REn.e4... v...cHy..6 Foa wG RPCQn Wl E -o Fe,Tv1aE ml . F.a.e. 3e "r (2 1?" ABuvE RuAo BEACH COVE (DB -3) DRAINAGE AREA (Post -Development) Stage / Storage Computations Begin Stage Calculations = 29.0 NGVD End Stage Calculations = 38.0 NGVD Calculation Increment = 0.5 ft e ow R.:M7"WMSLW.Y.� WoftheeL BB.] Slp ac. Stwna Pavement Green Space Acres Acres = 0.280 1.490 Total Area = 1.770 Low Rng = 29.80 30.00 High Rng = 36.50 37.00 Total Linear Linear Linear Linear Cumulative. Total Stage Storage Area Storage Area Storage Area (NGVD) (ac.ft.) (ac.) (ac.ft.) (ac.) (ac.ft.) (ac.) 29.0 0.00 0.00 0.00 0.00 0.00 0.00 29.5 0.00 0.00 0.00 0.00 0.00 0.00 30.0 0.00 0.01 0.00 0.01 0.00 0.02 30.5 0.01 0.03 0.03 0.11 0.04 0.14 31.0 0.03 0.05 0.11 0.21 0.14 0.26 31.5 0.06 0.07 0.24 0.32 0.30 0.39 32.0 0.10 0.09 0.43 0.43 0.53 0.52 32.5 0.15 0.11 0.67 0.53 0.82 0.64 33.0 0.21 0.13 0.96 0.64 1.17 0.77 33.5 0.29 0.15 1.30 0.75 1.59 0.90 34.0 0.37 0.18 1.70 0.85 2.07 1.03 34.5 0.46 0.20 2.16 0.96 2.62 1.15 35.0 0.57 0.22 2.66 1.06 3.23 1.28 35.5 0.68 0.24 3.22 1.17 3.90 1.41 4 •Z(. 36.0 0.80 0.26 3.83 1.28 4.63 1.54 A<•FT 36.5 0.94 0.28 4.50 1.38 5.43 1.66 37.0 1.08 0.28 5.22 1.49 6.29 1.77 37.5 1.22 0.28 5.96 1.49 7.18 1.77 38.0 1.36 0.28 6.71 1.49 8.06 1.77 F- F. F. PaTE#r,I, ga AJ 35, 1ST N&. . vJ �. © Si•vc �+ TMu 9AJ-- I1 P/W PVJ Bn -ro PWFMA I- Fv'I VMC ml - F. F. E, Sc S'cT G_;'18 Agove i2oAo e ow R.:M7"WMSLW.Y.� WoftheeL BB.] Slp ac. Stwna BEACH COVE (DB4) DRAINAGE AREA (Post -Development) Stage /Storage Computations Begin Stage Calculations = End Stage Calculations = Calculation Increment= Wet Detention Side Slopes Wet 1.050 Detention Acres = 0.780 Low Rng = 19.00 High Rng = 37.00 BEACH COVE (DB4) DRAINAGE AREA (Post -Development) Stage /Storage Computations Begin Stage Calculations = End Stage Calculations = Calculation Increment= Wet Detention Side Slopes Pavement 1.050 2.720 19.00 21.00 23.00 33.50 r 19.0 NGVD 37.0 NGVD 0.5 ft Green Space Acres ^ 2.490 Total Area = 7.040 20.00 33.00 Total Vertical Vertical Linear Linear Linear Linear Linear Linear Cumulative. Total Stage Storage Area Storage Area Storage Area Storage Area Storage Area 19.0 0.00 0.78 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.79 19.5 0.39 0.78 0.03 0.13 0.00 0.00 0.00 0.00 0.42 0.91 0.e1 20.0 0.78 0.78 0.13 0.26 0.00 0.00 0.00 0.01 0.91 1.05 AG, r T. 20.5 1.17 0.78 0.30 0.39 0.00 0.00 0.02 0.10 1.49 1.27rwaTe�\ 21.0 1.56 0.78 0.53 0.53 0.00 0.01 0.10 0.19 2.18 1.51 4VA�.r 1 21.5 1.95 0.78 0.82 0.66 0.03 0.11 0.22 0.29 3.01 1.83 22.0 2.34 0.78 1.18 0.79 0.11 0.22 0.38 0.38 4.01 2.17 22.5 2.73 0.78 1.61 0.92 0.24 0.33 0.60 0.48 5.18 2.50 S -SS 23.0 3.12 0.78 2.10 1.05 0.44 0.44 0.86 0.57 6.52 2.84 23.5 3.51 0.78 2.63 1.05 0.68 0.54 1.17 0.67 7.99 3.04 "li F.Ra. 24.0 3.90 0.78 3.15 1.05 0.98 0.65 1.53 0.77 9.56 3.25 24.5 4.29 0.78 3.68 1.05 1.33 0.76 1.94 0.86 11.24 3.45 25.0 4.68 0.78 4.20 1.05 1.74 0.87 2.39 0.96 13.02 3.66 25.5 5.07 0.78 4.73 1.05 2.20 0.98 2.90 1.05 14.90 3.86 r 26.0 5.46 0.78 5.25 1.05 2.72 1.09 3.45 1.15 16.88 4.07 26.5 5.85 0.78 5.78 1.05 3.29 1.20 4.05 1.25 18.96 4.27 27.0 6.24 0.78 6.30 1.05 3.92 1.31 4.69 1.34 21.15 4.48 r 27.5 6.63 0.78 6.83 1.05 4.60 1.41 5.39 1.44 23.44 4.68 28.0 7.02 0.78 7.35 1.05 5.33 1.52 6.13 1.53 25.83 4.89 28.5 7.41 0.78 7.88 1.05 6.12 1.63 6.92 1.63 28.32 5.09 29.0 7.80 0.78 8.40 1.05 6.96 1.74 7.76 1.72 30.92 5.29 29.5 8.19 0.78 8.93 1.05 7.86 1.85 8.64 1.82 33.62 5.50 30.0 8.58 0.78 9.45 1.05 8.81 1.96 9.58 1.92 36.42 5.70 30.5 8.97 0.78 9.98 1.05 9.82 2.07 10.56 2.01 39.32 5.91 31.0 9.36 0.78 10.50 1.05 10.88 2.18 11.59 2.11 42.33 6.11 31.5 9.75 0.78 11.03 1.05 12.00 2.28 12.67 2.20 45.44 6.32 32.0 10.14 0.78 11.55 1.05 13.16 2.39 13.79 2.30 48.65 6.52 32.5 10.53 0.78 12.08 1.05 14.39 2.50 14.96 2.39 51.96 6.73 33.0 10.92 0.78 12.60 1.05 15.67 2.61 16.19 2.49 55.37 6.93 33.5 11.31 0.78 13.13 1.05 17.00 2.72 17.43 2.49 58.87 7.04 34.0 11.70 0.78 13.65 1.05 18.36 2.72 18.68 2.49 62.39 7.04 34.5 12.09 0.78 14.18 1.05 19.72 2.72 19.92 2.49 65.91 7.04 35.0 12.48 0.78 14.70 1.05 21.08 2.72 21.17 2.49 69.43 7.04 35.5 12.87 0.78 15.23 1.05 22.44 2.72 22.41 2.49 72.95 7.04 36.0 13.26 0.78 15.75 1.05 23.80 2.72 23.66 2.49 76.47 7.04 36.5 13.65 0.78 16.28 1.05 25.16 2.72 24.90 2.49 79.99 7.04 37.0 14.04 0.78 16.80 1.05 26.52 2.72 26.15 2.49 83.51 7.04 V FAIN. F.P.S. 1>6T6iQ-~-S0 AS 22.63 nl4vp F�let9&&SWMSC81M S.,& O WATea QVA�,TT WEAR CREST i",e&T W.4•S Pri TfEk*, -ED AS 6 N -vO MiUlleec o sip V.. stems° SET ".Q. W 8 e 2 2 1 9 -'aa, W& V O BEACH COVE (DB -5) DRAINAGE AREA (Post -Development) Stage / Storage Computations Begin Stage Calculations = End Stage Calculations = Calculation Increment= 20.0 NGVD 35.0 NGVD 0.5 ft Acres Total Area = 4.240 Perimeter Dry Pavement Green Space Retention Swale Acres = 0.150 3.210 0.880 Low Rng = 24.30 20.00 20.00 High Rng = 30.50 33.00 28.00 20.0 NGVD 35.0 NGVD 0.5 ft Acres Total Area = 4.240 enrzoo. W. B&t&SWMSgs.gs We�e01: p655" vz. 5lwpe Total Linear Linear Linear Linear Linear Linear Cumulative. Total Stage Storage Area Storage Area Storage Area Storage Area (NGVD) (ac.ft.) (ac.) (ac.ft.) (ac.) (ac.ft.) (ac.) (ac.ft.) (ac.) 20.0 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.02 20.5 0.00 0.00 0.03 0.12 0.01 0.06 0.04 0.18 21.0 0.00 0.00 0.12 0.25 0.06 0.11 0.18 0.36 21.5 0.00 0.00 0.28 0.37 0.12 0.17 0.40 0.54 22.0 0.00 0.00 0.49 0.49 0.22 0.22 0.71 0.71 22.5 0.00 0.00 0.77 0.62 0.34 0.28 1.12 0.89 23.0 0.00 0.00 1.11 0.74 0.50 0.33 1.61 1.07 23.5 0.00 0.00 1.51 0.86 0.67 0.39 2.19 1.25 24.0 0.00 0.00 1.98 0.99 0.88 0.44 2.86 1.43 24.5 0.00 0.00 2.50 1.11 1.11 0.50 3.61 1.61 25.0 0.01 0.02 3.09 1.23 1.38 0.55 4.47 1.80 LIS? 25.5 0.02 0.03 3.73 1.36 1.66 0.61 5.42 1.99 26.0 0.03 0.04 4.44 1.48 1.98 0.66 6.46 2.18 nn C'`•�•� 26.5 0.06 0.05 5.22 1.61 2.32 0.72 7.60 2.37 l 27.0 0.09 0.07 6.05 1.73 2.70 0.77 8.83 2.56 27.5 0.12 0.08 6.94 1.85 3.09 0.83 10.16 2.75 28.0 0.17 0.09 7.90 1.98 3.52 0.88 11.59 2.94 28.5 021 0.10 8.92 2.10 3.96 0.88 13.09 3.08 29.0 0.27 0.11 10.00 2.22 4.40 0.88 14.67 3.22 29.5 0.33 0.13 11.14 2.35 4.84 0.88 16.31 3.35 30.0 0.39 0.14 12.35 2.47 5.28 0.88 18.02 3.49 30.5 0.47 0.15 13.61 2.59 5.72 0.88 19.80 3.62 31.0 0.54 0.15 14.94 2.72 6.16 0.88 21.64 3.75 31.5 0.62 0.15 16.33 2.84 6.60 0.88 23.54 3.87 32.0 0.69 0.15 17.78 2.96 7.04 0.88 25.51 3.99 32.5 0.77 0.15 19.29 3.09 7.48 0.88 27.54 4.12 33.0 0.84 0.15 20.87 3.21 7.92 0.88 29.63 4.24 33.5 0.92 0.15 22.47 3.21 8.36 0.88 31.75 4.24 34.0 0.99 0.15 24.08 3.21 8.80 0.88 33.87 4.24 34.5 1.07 0.15 25.68 3.21 9.24 0.88 35.99 4.24 35.0 1.14 0.15 27.29 3.21 9.68 0.88 38.11 4.24 0 M,.v. F.F.E. vvAJ Oe' /}S 25. 03 NC,vp enrzoo. W. B&t&SWMSgs.gs We�e01: p655" vz. 5lwpe FIRM Map NATIONAL FLOOD INSURANCE PROGRAM i FIM FLOOD INSURANCE RATE MAP _ INDIAN RIVER COUNTY, FLORIDA AND INC -01t ORATED AREAS PANEL 79 OF 169 CONTAINS- COtdlVBlAti { NUMBER PANEL SUFFIX •. ORCN11l, TOWN OF 120122 0079 F �ISEBASTIAN, CITY OF 120123 0079 F UNINCORPORATED AREAS 120119 0079 F —NOTE— NOTE—THIS THISMAP INCORPORATES APPROXIMATE BOUNDARIES OF COASTAL BARRIER RE- SOURCES -SYSTEM UNIT AND/OR OTHER- WISE PROTECTED AREAS ESTABL'WHED .. UNOER THE COASTAL BARRIER IMPROVE- IWifNT ACT OF 1190 (Pt 101.691). MAP NUMBER: 12061CO079 F A EFFECTIVE BATE; 4 JELLY 21 1992 R K' ! Federal E.Imergency Mmagement Agency Indian River County Unincorporated Areas 120119 ZONE X OR w .AI A M I SITE I a ZONE X t, ZONE X INDIAN RIVER COUNTY CITY OF SEBASTIAN z I z Geotechnical Report M A. M. ENGINEERING AND TESTING, INC. 3504 iNDUsTRIAL 33RD STREET ., FORT PIERCE, FLORIDA 34946 (561) 461-7508 OFFICE - (561) 451-8880 FAx October 23, 2002 Culpepper and Terpening, Inc. Attention: David L. Phillips, P.E. 2980 South 25'e Street Fort Pierce, Florida 34981 ^ Re: Beach Cove Project, Sebastian, Florida Project No. D-02526 Ladies and Gentlemen: A. M. Engineering and Testing, Inc. is pleased to submit this geotechnical exploration report for the referenced project. Enclosed are the logs from the three (3) Auger (AB) borings made at the project on October 7, 2002. The approximate locations of the borings are noted on the Boring Location Plan furnished by Culpepper and Terpening, Inc. The depths indicated on the boring logs are below the ground surface at the time the borings were made.' ^ Laboratory permeability tests were run on five (5) selected samples from the auger borings. The samples were compacted in the permeameter mold to densities that approximated the existing field conditions. After saturating the samples, falling head permeability tests with an initial head of 11/2 feet were performed. We consider the test results present affgood order of magnitude approximation of the in situ permeabilities. The results are as follows: ^ ^ Boring AB -1 Depth (feet) 3-4 Dry Density (pcf) 28.1 Coefficient of Permeability, k (cm/sec) (ft/day) 2.6 x 10 7.4 x 10' AB -1 4-6 97.3. 1.2 x 10- 3.4 x 10 - AB -1 6-9 101.1 4.4 x 10" 12.4 AB -2 3V2-4 98.5 1.1 x 10- 31.0 AB -2 5 — 9 99.2 1.6 x 10- 46.4 We consider the avera a wet pe on water table levels are one foot above the levels noted on the ^ boring logs a e r, ` ed" l intensity and duration or total rainfall quantities exceed the normally apated rainfall quant ies, the groundwater level may exceed the estimated seasonal high groun.SVCer l2 6 2009 n� Fi M A. M. ENGINEERING AND TESTING, INC. Beach Cove Project Project No. D-02526 A. M. Engineering and Testing, Inc. has appreciated the opportunity to assist you with this phase of your project. If you have any questions regarding this report or need any furtlier information, please call us. Respectfully submitted, A> -M: E ERING A TESTING, INC. Da ' Alker �e�beccaZant Ascoli, P.E. Project Manager Senior Geotechnical Engineer Florida Registration No. 51863 RGA/DA Attachments: Boring Location Plan Boring Logs (3) Copies: Culpepper and Terpening, Inc. - 2 Daniel Britton - 1 S: UlMDATAICu(pepper & Terpening, lncl8each Cove ProjectD-02526Vtepor4doc nn 2 A. M. ENGINEERING AND TESTING, INC. KEY TO SOIL CLASSIFICATION I. Silt and Cla i I Less than 0.0029 inch 0.074 mmV v Sand visible Fine - 0.0029 inch to 0.017 inch (0.074 min to 0.42 nim) Medium - 0.017 inch to 0.079 inch (0.42 to 2.0 mm) Coarse - 0.079 inch to 0.19 inch 2.0 to 4.75 mm) Gravel Fine - 0.19 inch to 0.75 inch Coarse - 0.75 inch to 3 inches Cobbles 3 to 12 inches Boulders Greater than 12 inches * Unified Soil Classification System (ASTM D 2487-93) II. AMOUNT OF MINOR CONSTITT JF?VTc n r cr-�TT Content of Minor SOIL Constituents Modifier Content of ORGANIC Components* Shell, Silt, etc. 0% to 5% 5% to 12% Trace 1% 12% to 30% Little 2% to 4% theater than 8% * Approximations based on visual examination of samples and results of laboratory analyses, if available. SANDS and GRAVEL SILTS and CLAYS Blows / foot Relative Cone -. N Density Resistance Blows /foot Consistency Cone Resistance is N 0-4 5-i0 Ve loose Loose 0-15 0 - 2 Ve soft is 0-3 11-20 Firm 20-40 40 - 80 3-4 SOfi 4 -6 21-30 Medium dense 85-12 5-8 9-15 Firm 7-12 31-50 Dense 125 - 200 16-3o Stiff 13-25 Over -5050 Ve dense Over 200 Over 30 Ve stiff 25 50 Hard (lvrr5(1 HA = KANn ilxJ — Loc.ATt o.v Proposed New Hon 50,3( too'typ. CC Proposed New Roar 50' R.QM. typ. City of Sebastian Existing Single Family Resklen Proposed Playgroup Recreatio Vehicle Pe N W e ► Proposed Expansion Coneeptual Site Plan s Beach Cove Scale t" = 200' Sebastian, , Fl011da City of Sebastian Future Single Family Residential Surrounding Lake/Sand Mine KM H -t1 MI .� A. B. Cook landscam Architect Pox C ifintt. Finriria znoc DCT -.23-200.2 1403 .FROM,-A.M E.NGINEERING AND, TESTING 1 561 461:8880_ T>221. P.005/005 F7238.-' A, M, ENGINEERING AND TESTINGt INC 35041NousTRIAL33R09=T,FoaTPPwEc FtonmA34946 PHONE(561)461-7508 FA7t(561)461-8880 AUGER BORINGS (ASTM D-1452) Client: Culpepper and Terpening, Inc Project No: D-02526 —Project: Beach Cove Project Lab No: 1%- 3 Sebastain, Florida Test Date: 10/7/02 Elevation: Existing Technician: JR & C 6-9 Li t brown fine sand I I FEST LOCATION: AB -1 Depth (feet) Description (color, tectare, consistency, remarks) 1-1'/ Medium brown fine sand, little rock pieces 1%- 3 light brown fine sand r 3-4 Dark brown silt and organics, some sand muck 4-6 Dark brown organically stained fine sand, little silt 6-9 Li t brown fine sand Water table at 2 feet below ground riace Cws� r 41- ig.o' "'TESTLOCATION: AB -2 Depth (feet) Description (color, texture, consistency, remarks) 0 - 3Y: Ilgbt brown fine sand 31A-4 Medium brown fine sand 4-5 Medium Lo dark brown fine sand, trace silt,some cemented pieces 5-9_ g t gray fine sand Water table at5feet below groundsurface (wSwr j� /9•S' Novo TEST LOCATION: AB -3 Depth (feet) Description (color, texture, consistency, remarks) 0-5 Li t brown fine sand 'l 5-6 Medium brown fine sand 6-7 Medium to dark brown fine sand, trace silt 7-10 Light My fine sand Watertable at 6%z, fcct below ground surface w Swat t'lc .1 q, o' n -kve .,. rIMDATAIC�fpepper&Terpening, LulBeaeJi Cove ProjcetA02526418/-3.doc' - - SCS Soils Data Indian River County, Florida mapped areas range from 20 to 700 acres. Slopes are smooth and range from 0 to 2 percent. Typically, the surface layer is black grading to dark gray fine sand about 15 inches thick. The subsurface layer is gray fine sand to a depth of about 26 inches. The subsoil extends to a depth of about 62 inches. The upper 21 inches of the subsoil is black, very dark gray, dark reddish brown, dark brown, brown fine sand. The lower 15 inches is grayish brown or gray sandy loam. The substratum is light brownish gray loamy fine sand to a depth of about 80 inches. Included with this soil in mapping are small areas of Myakka, Pepper,. Wabasso, and Oldsmar soils. Also included are soils in scattered small wet depressions. The included soils make up less than 15 percent of the map unit. In most years, the .water table is at a depth of less than 10 inches of the surface for 2 to 4 months during the wet season and within a depth of 40 inches for more than 6 months. Permeability is rapid in the surface and subsurface layers and moderate to moderately rapid in the subsoil and substratum. The available water capacity is very low in the surface and subsurface layers, low to medium in the subsoil;'and low in the substratum. Natural fertility is low. Most areas of this soil are in natural vegetation. However, in areas that have been cleared, the dominant use is for citrus. The natural vegetation is south Florida slash pine, sawpalmetto, wiregrass, cabbage palm, waxmyrtle, bluestems, panicums, and various other grasses. Citrus trees are well suited to this soil if a water control system is installed to maintain the water table at a depth of about 4 feet. Planting trees on beds lowers the effective depth of the water table. A suitable cover crop should be maintained between tree rows. Regular applications of fertilizer and lime are needed. This EauGallie soil has very severe limitations for cultivated crops because of wetness and the sandy texture in the root zone. However, if a water control system is installed and soil improving measures used, this soil has fair suitability for many vegetable crops. A water control system is needed to remove excess water in wet seasons and to provide for subsurface irrigation in dry seasons. Soil improving crops and crop residue should be used to protect the soil from erosion and maintain organic matter. Seedbed preparation should include bedding of rows. Fertilizer and lime should be applied according to the need of the crop. This soil has good suitability for improved pasture. Pangolagrass, improved bahiagrass, and white clover grow well if properly managed. Water control measures are needed to remove the excess surface water after heavy rains. Regular applications of lime and fertilizers are needed. Overgrazing should be prevented. The potential productivity of the soil for pine trees is moderately high. Equipment limitations, seedling 23 mortality, and plant competition are the main concerns in management. South Florida slash pine is the preferred tree to plant. This soil is moderately suited to desirable range plant production. The dominant forage is creeping bluestem, lopsided indiangrass, pineland threeawn, and chalky bluestem. Management practices should include deferred grazing and brush control. EauGallie soil is in the South Florida Flatwoods range site. This soil has severe limitations for sanitary facilities, building site development, and recreational uses. Water control measures are needed to overcome excessive wetness. Septic tank absorption fields may need to be enlarged because of slow permeability. Sealing, or lining of sewage lagoons with impervious soil material can reduce excessive seepage. The sandy surface layer should be stabilized for recreational uses. Sealing or lining of trench sanitary landfills with imperviods soil material can reduce excessive seepage. Sidewalls of shallow excavations should be shored. This EauGallie soil is in capability subclass IVw. 4—Immokalee fine sand, his nearly level, poorly raine Moi is on broad flatwoods. The mapped areas range from,5 to 300 acres. Slopes are smooth and range from 0 to 2 percent. Typically, the surface layer is very dark gray fine sand about 5 inches thick. The subsurface layer is light gray fine sand to a depth of 35 inches. The subsoil is very dark gray fine dand to a depth of about 55 inches. Below that to a depth of 80 inches or more is brown fine sand. Included with this soil in mapping are small areas of Myakka, Oldsmar, Pomello, Pompano, and Myakka depressional soils. Also included are areas of soils that are similar to Immokalee soil but have a subsoil that is more than 28 inches thick. The included soils make up 15 percent of the map unit. In most years, under natural conditions, the water table is at a depth of 10 to 40 inches for more than 6 months and at a depth of less than 10 inches for 1 to 3 months during the wet season. Permeability is rapid in the surface and subsurface layers and underlying material, and it is moderate in the subsoil. The available water capacity is very low in the surface and subsurface layers and underlying material, and it is moderate in the subsoil. Natural fertility and the organic matter content are low. Most areas of this soil are in natural vegetation consisting of south Florida slash pine and scattered live oak. The understory consists of sawpalmetto, running oak, inkberry, fetterbush, waxmyrtle, pineland threeawn, bluestems, panicums, and various other grasses. Suitability of this soil for citrus trees is good if a water control system is installed to maintain the water table at a depth of about 4 feet. Planting trees on beds lowers the effective depth of the water table. Regular applications of lime and fertilizer are needed. M OR M! M M M M 24 Under natural conditions, this Immokalee soil is poorly suited to cultivated crops because of wetness and the sandy texture in the root zone. However, if a water control system is installed and soil improving measures are used, this soil has fair suitability for many vegetable crops. A water control system is needed to remove excess water in wet seasons and to provide for subsurface irrigation in dry seasons. Soil improving crops and crop residue should be used to protect the soil from erosion and maintain organic matter. Other good management practices are seedbed preparation, including bedding of rows, and regular application of fertilizer and lime. This soil has good suitability for improved pasture. Pangolagrass, improved bahiagrass, and white clover grow well if properly managed. Water control measures are needed to remove the excess surface water after heavy rains. Regular applications of lime and fertilizers are needed. Overgrazing should be prevented. The potential productivity of this soil for pine trees is moderate. Equipment limitations, seedling mortality, and plant competition are the main concerns in management. South Florida slash pine is the preferred tree to plant This soil is moderately suited to desirable range plant production. The dominant forage is creeping bluestem, lopsided indiangrass, pineland threeawn, south Florida bluestem, and chalky bluestem. Management practices should include deferred grazing and brush control. Immokalee soil is in the South Florida Flatwoods range site. This soil has severe limitations for sanitary facilities, building site development, and recreational upes. Water control measures are needed to overcome excessive wetness. Septic tank absorption fields may need to be enlarged because of wetness. Sealing or lining of sewage lagoons with impervious soil material can reduce excessive seepage. The sandy surface layer should be stabilized for recreational uses. Sealing or lining of trench sanitary landfills with impervious soil material can reduce excessive seepage. Sidewalis of shallow excavations should be shored. This Immokalee soil is in capability subclass IVw. 5—Myakka fine sand. This nearly level, poorly drained soil is on broad flatwoods. The mapped areas range from 20 to 350 acres. Slopes are smooth and range from 0 to 2 percent. Typically, the surface layer is black fine sand about 5 inches thick. The subsurface layer is fine sand to a' depth of about 28 inches. The upper 15 inches of the subsurface layer is grayish brown, and the lower 8 inches is light brownish gray. The subsoil extends to a depth of about 68 inches. It is black fine sand in the upper 3 inches of the subsoil, dark reddish brown fine sand in the next 8 inches, black fine sand in the next 11 inches, black fine sand that is partially weakly cemented in the next 8 inches, and very dark grayish brown fine Soil Survey sand in the lower 10 inches. The substratum to a depth of 80 inches or more is dark brown fine sand. Included with this soil in mapping are small areas of EauGallie, Immokalee, Pompano, Riviera, and Myakka depressional soils. Also included are areas of soils that are similar to Myakka soil but have a thicker, dark colored surface layer, some soils in scattered small wet depressions, and also soils that are similar to Myakka soil but have a layer of shell fragments or limestone at a depth of more than 60 inches. The included soils make up about 15 percent of the map unit. In most years, under natural conditions, the water table is at a depth of 10 to 40 inches for more than 6 months and at a depth of less than 10 inches for 1 to 3 months during the wet season. Permeability is rapid in the surface and subsurface layers and substratum, and it is moderate to moderately rapid in the subsoil. The available water capacity is very low in the surface and subsurface layers and substratum, and it is moderate in the subsoil. Natural fertility and organic matter content are low. Most areas of this soil are in natural vegetation consisting of south Florida slash pine. The understory consists of sawpalmetto, running oak, inkberry, fetterbush, waxmyrtle, pineland threeawn, bluestems, panicums, and other grasses. Suitability of this soil for citrus trees is good if a water control system is installed to maintain the water table at a depth of about 4 feet. Planting trees on beds lowers the effective depth of the water table. A suitable cover crop should be maintained between tree rows to control erosion and protect the soil from blowing. Regular applications of lime and fertilizer are needed. This Myakka soil has very severe limitations to cultivated crops because of wetness and the sandy texture in the root zone. However, if a water control system is installed and soil improving measures are used, it has a fair suitability for many vegetable crops. A water control system generally is needed to remove excess water in wet seasons and to provide for subsurface irrigation in dry seasons. Soil improving crops and crop residue should be used to protect the soil from erosion and maintain organic matter. Seedbed preparation should include bedding of rows. Fertilizer and lime should be applied according to the need of the crop. This soil has a good suitability for improved pasture. Pangolagrass, improved bahiagrass, and white clover grow well if properly managed. Water control measures are normally needed to remove the excess surface water after heavy rains. Regular applications of lime and fertilizers are needed. Overgrazing should be prevented. The potential productivity of this soil for pine trees is moderate. Equipment limitations, seedling mortality, and plant competition are the main concerns in management. South Florida slash pine is the preferred tree to plant. 42 mapped areas range from 30 to 200 acres. Slopes are smooth to convex. Typically, the surface layer is dark gray -sand about 3 inches thick. The subsurface layer is white sand to a depth of about 75 inches. The subsoil to a depth of 80 inches or more is dark reddish brown sand that is 60 to 75 percent strongly cemented. Included with this soil in mapping are small areas of Immokalee, Pomello, and St. Lucie soils. Also included are areas of soils that are similar to Jonathan soil but are better drained. The included soils make up about 15 percent of the map unit. -1n -most years, under natural conditions, the water table is at a depth of 40 to 60 inches for 1 to 4 months during the wet season. It is below 60 inches for the remainder of the year. Permeability is moderately rapid to very rapid in the surface and subsurface layers and slow or very slow in the subsoil. The available water capacity is very low in the surface and subsurface layers and medium in the subsoil. Natural fertility and the organic matter content are very low. Most areas of this soil are in natural vegetation. The natural vegetation consists of south Florida slash pine, sand pine, scattered scrub hickory, scrub live oak, Chapman oak, rosemary, pricklypear cacti, grassleaf goldaster, flag pawpaw, mosses and lichens, pineland threeawn, and various other grasses. This Jonathan soil is not suited to cultivated crops because of droughtiness and sandy texture. A ground cover of close-growing'plants is needed between the tree rows to protect the soil from blowing. A properly designed irrigation system is needed to mainiain optimum moisture and obtain high yields. This soil has poor suitability for improved pasture grasses. Deep-rooted plants, such as coastal bermudagrass and bahiagrass, are well adapted species to plant, but yields are reduced by periodic droughts. Regular applications of fertilizer and lime are needed. Controlled grazing is needed to help maintain plant vigor. The potential productivity of this soil for pine trees is low. South Florida slash pine and sand pine are the recommended trees to plant. Equipment limitations and seedling mortality are the main concerns in management This soil is poorly suited to desirable range plant production. The vegetative community consists of a dense, woody understory of sawpalmetto, Florida rosemary, and scrub oak. Although this site is seldom grazed by livestock, it does furnish winter protection. Jonathan soil is in the Sand Pine Scrub range site. This soil has slight limitations for dwellings without basements, small commercial buildings, and local roads and streets. No corrective measures are needed. This soil is well suited to septic tank absorption fields and playgrounds. Some water control measures are needed for septic tank absorption fields to lower the water table during wet seasons. The sandy surface layer should be Soil Survey stabilized for playground use. This soil has severe limitations for trench sanitary landfills, sewage lagoons, and shallow excavations. Sealing or lining of landfills and lagoons with impervious soil material can reduce excessive seepage. Water control practices are needed for trench sanitary landfills. Sidewalls should be shored for shallow excavations. This Jonathan soil is in capability subclass Vis. 33—Astatula sand 0 to 5 perceg to es. This soil is nearly level to gently sloping and excessively drained. It is on the Atlantic Coastal Ridge. The mapped areas range from about 20 to 200 acres. Slopes are smooth to convex. Typically, the surface layer is grayish brown sand about 4 inches thick. The subsurface layer is brown sand about 1 inch thick. The underlying material to a depth of 80 inches or more is brownish yellow or strong brown sand. Included with this soil in mapping are small areas of Paola, Pomello, and St. Lucie soils. Because of excavation of the Astatula soils for fill material, some included soils have short, steep slopes that range from 5 to 40 percent. The included soils make up less than 15 percent of the map unit This soil has no water table within a depth of 6 feet throughout the year. Permeability is very rapid, and the available water capacity is very low throughout. Natural fertility and the organic matter content are very low. Most areas of this soil remain in natural vegetation consisting of cabbage palm, scrub hickory, longleaf and sand pine, sawpalmetto, sand live oak, and scrub oak. Pineland threeawn and bluestems are the most common native grasses, but these grasses can be quite sparse in occurrence because of the droughty nature of the soil. Under natural conditions, this Astatula soil is not suited to cultivated crops. It has poor suitability for vegetable crops and citrus. A ground cover of close -growing plants between the tree rows should be maintained to protect the soil from blowing. A properly designed irrigation system is needed to maintain optimum moisture and obtain high yields. Regular applications of fertilizer and lime are also needed. This soil has poor suitability for improved pasture grasses. Deep-rooted plants, such as coastal bermudagrass and bahiagrass, are well adapted to this soil, but yields are reduced by periodic droughts. Regular applications of fertilizer and lime are needed. Controlled grazing is needed to help maintain plant vigor. The potential productivity of this soil for pine trees is low. Slash pine and sand pine are the preferred trees to plant. Equipment limitations and seedling mortality are the main concerns in management. This soil is poorly suited to desirable range plant production. The vegetative community consists of a dense, woody understory of sawpalmetto, Florida rosemary, scrub oak, indiangrass, creeping bluestem, M M r Ali no ., ,.4 Wh M 04 M i Indian River County, Florida beaked panicums, and perennial legumes. Although this site is seldom grazed by livestock, it does furnish winter protection. Astatula soil is in the Sand Pine Scrub range site. This soil has slight limitations for septic tank absorption fields, dwellings without basements, and local roads and streets. No corrective measures are needed, although the proximity to a stream or canal should be considered in the placement of a septic tank absorption field to prevent lateral seepage and pollution. This soil is also well suited to small commercial buildings. Land shaping may be needed on the more sloping areas. This soil has severe limitations for playgrounds, trench sanitary landfills, and shallow excavations. The sandy surface should be stabilized for playground use, and land shaping may be needed on the more sloping areas. Sealing or lining of trench sanitary landfills with impervious soil material. can reduce excessive seepage. Sidewalls of shallow excavations should be shored. This Astatula soil is in capability subclass Vis. 34—Satellite fine sand. This soil is nearly level and somewhat poorly drained. It is on low knolls and ridges on the flatwoods. The i}iapped areas range from 10 to 250 acres. Slopes are smooth to convex and range from 0 to 2 percent. Typically, the surface layer is dark gray fine sand about 4 inches thick. The underlying material is light brownish gray, grayish brown, and dark grayish brown fine sand to a depth of 80 inches or more. Included with this soil in mapping are small areas of Archbold, Immokalee, Myakka, Pomello, and Pompano soils. The included soils make up less than 15 percent of the map unit. In most years, under natural conditions, the water table is at a depth of 18 to 24 inches for 2 to 6 months and at a depth of 40 to 72 inches for 6 months or more. Permeability is very rapid, and the available water capacity is very low. Natural fertility and the organic matter content are low. Most areas of this soil are in natural vegetation. The natural vegetation consists of south Florida slash pine, longleaf pine, sand live oak, sawpalmetto, pineland threeawn, indiangrass, bluestems, fetterbush, and various other sedges and grasses. The suitability of this soil for citrus trees is fair if good management practices are used. A water control system is necessary to maintain the water table at a depth of about 4 feet during the wet season and to provide for subsurface irrigation during periods of low rainfall. Regular applications of fertilizer and lime help to obtain good yields. A suitable cover crop should be maintained between tree rows to prevent soil blowing. This Satellite soil is poorly suited to cultivated crops, but if intensive management practices are used, a few special crops can be grown. A water control system should be installed to remove excess water in wet 43 seasons and to provide for subsurface irrigation in dry seasons. Soil improving crops and crop residue should be used to protect the soil from erosion and maintain organic matter. Applications of fertilizer and lime should be applied according to the need of the crop. The suitability for growing improved pasture grasses is fair. Bahiagrass and pangolagrass will grow when properly managed. Regular applications of lime and fertiliser are needed. Overgrazing should be prevented. The potential productivity of this soil for pine trees is moderate. Seedling mortality is the main concern in management. South Florida slash pine is preferred for planting. This soil is poorly suited to desirable range plant production. The vegetative community consists of a dense, woody understory of sawpalmetto, Florida rosemary, and scrub oak. Although this site is Seldom grazed by livestock, it does furnish winter protection. Satellite soil is in the Sand Pine Scrub range site. This soil has severe limitations for sanitary facilities and building site development. It has moderate limitations for local roads and streets and recreation use. Water control measures are needed to overcome excessive wetness. Septic tank absorption fields may need to be enlarged because of wetness. The very rapid permeability of this soil can cause pollution of ground water in areas of septic tank absorption fields. Water control measures and sealing or lining of sewage lagoons and trgnch sanitary landfills with impervious soil material can reduce excessive seepage. The sandy surface layer should be stabilized for recreational uses. Sidewalls of shallow excavations should be shored. Water control measures are needed. This Satellite soil is in capability subclass Vls. 35—McKee mucky clay loam. rhis soil is level and very pouioy uwdmec. a la w mdnyiove islands and swamps. This soil formed in unconsolidated loamy or clayey tidal deposits and is inundated by fluctuating tides twice a day. These areas are at or near sea level and are in and adjacent to the Indian River (fig. 12). Individual mapped areas range from 10 to 450 acres. Slopes are less than 1 percent. Typically, the surface layer is very dark grayish brown mucky clay loam about 1 inch thick. The underlying material is very dark gray clay loam to a depth of 15 inches, grayish green to dark greenish gray sandy clay to a depth of about 60 inches, and dark gray sandy loam to a depth of 80 inches or more. Most layers are very fluid when squeezed in the hand, and some layers range from very fluid to slightly fluid. Included with this soil in mapping are small areas of soils that are similar to McKee soil but have limestone boulders at a depth of more than 40 inches, also some small areas of soils that are similar but have limestone boulders at a depth of less than 40 inches, and some areas of soils that are similar but have a thin organic This soil has fair suitability for improved pasture grasses. Bahiagrass and pangolagrass grow well if properly managed. Water -control measures are needed to remove excess surface water after heavy rains and to prohibit saltwater intrusion. Regular applications of fertilizer are needed. Grazing should be controlled to maintain plant vigor. This soil is not suited to pine trees. The shallow depth to limestone and wetness are the main limitations. This soil generally is not used for rangeland. In its natural condition, Perrine Variant soil is in the Salt Marsh ecological plant community. This soil .has severe. limitations for building site development, sanitary facilities, and recreational uses. The shallow depth to bedrock and wetness are the main limiting factors. Mounding is needed for septic tank absorption fields. Because of the shallow depth to bedrock and hardness of limestone, excavation is difficult. The use of special equipment may be required. This Perrin Variant soil is in capability subclass iliw. Myakka fine sand, depressionai. his soil is nearly level and very poorly drained. it is in depressional areas. The mapped areas range from 5 to 100 acres. Slopes are concave and are less than 1 percent Typically, the surface layer is black fine sand about 4 inches thick. The subsurface layer is gray fine sand to a depth of about 17 inches. The subsoil extends to a depth of about 65 inches. The upper 3 inches of the subsoil is weakly cemented black One sand. The next 18 inches is dark brown fine sand. The next 12 inches is black fine sand. The lower 15 inches is dark grayish brown sand. The substratum to a depth of 80 inches or more is light gray sand. Included with this soil in mapping are small areas of Immokalee, Pompano, and Samsula soils. Also included are soils that are similar to the Myakka soil but have a muck or mucky fine sand surface layer less than 15 inches thick. The included soils make up less than 20 percent of the map unit This soil is ponded for 6 to 9 months or more each year. The water table is within a depth of 10 inches of the surface for 2 to 4 months, and it is at a depth of 10 to 40 inches for most of the remainder of the year. Permeability is rapid in the surface and subsurface layers and in the substratum. It is moderate or moderately rapid in the subsoil. The available water capacity is low in the surface layer, very low in the subsurface layer and substratum; and moderate in the subsoil. The natural fertility is low, and the organic matter content is low. Natural vegetation consists of blue maidencane, broomsedge, St.-Johnswort, waxmyrtle, red maple, sand cordgrass, milkwort, chalky bluestem, white bracted sedge, pipewort, arrowhead, water hyacinth, and various other water -tolerant weeds and grasses. This soil has poor suitability for cultivated crops because of ponding. Most areas do not have a suitable Soil Sur M drainage outlet, which makes an adequate drainage system difficult to establish. However, if intensive management practices and soil improving measures i used and a water control system is installed to remc. excess water rapidly, this soil is moderately suited to vegetable crops. Good management practices are c- rotation and seedbed preparation, including bedding rows. Soil improving crops and crop residue should be used to protect the soil from erosion and maintain organic matter. Fertilizer and lime should be applied according to the need of the crop. Under natural conditions, this Myakka soil is not suis to citrus trees. It is poorly suited to this use even if r intensive management practices are used and the w control system is adequate. This soil has fair suitability for improved pasture if v+ intensive management practices and soil improving "w measures are used and a water control system is installed. Pangolagrass and improved bahiagrass groes well if properly managed. Water control measures -ar! needed to remove the excess surface water after he rains. Regular applications of fertilizer and lime are needed. Grazing should be controlled to maintain plar vigor. The potential productivity of this soil for pine trees moderate. South Florida slash pine is the best adapte tree to plant Water control measures are necessary before trees can be planted. Equipment limitations a" seedling mortality are the main concerns in management. This soil is moderately suited to desirable range pV" production. The dominant forage is maidencane and cutgrass. Because the depth of the water table fluctuates throughout the year, a natural deferment in: grazing occurs. This rest period increases forage .. production, but these periods during high water level reduce the grazing value of the site. This Myakka sou in the Freshwater Marshes and Ponds range site. This soil has severe limitations for building site development, sanitary facilities, and recreational use Water control measures are needed to overcome excessive wetness. Sealing or lining of sewage lagor., and trench sanitary landfills with impervious soil mat can reduce excessive seepage. Fill material to raise ., level of the land surface is needed for septic tank absorption fields, local roads and streets, and small commercial buildings and for playground use. Sidew of shallow excavations should be shored. Mounding r be needed for septic tank absorption fields. _ This Myakka soil is in capability subclass Vllw. 46—Orsino fine sand, 0 to 5 percent slopes. Thi soil is nearly level to gently sloping and moderately lij, drained. It is on slightly higher ridges and knolls adje to Sebastian Creek. The mapped areas range from s. 100 acres. Slopes are smooth to convex. ;o0-unr AoN-ME' qa3-unr Ja0_unr loo-unr AoN-unr I I qa,;-unr I I AoN-unr I AoN_unr I I ;a0-unr I I qad-unr I AoN_unr sq;uow ;uaavddyi S'0-0 ;ualeddyi 0'T-0 I ;aaieddyl 0'1-0 I ;uaieddyl 0'T-0 I ;uaieddyl 0'T-0 I ;uaieddyl 0'9-5'£ I I --- l 0'9< 4uai2ddyl 0'T-0 I I pagoladl 0.1-0 -- 0'9< l --- l 0'9< l ;uaieddyl 0•T-0 l I I ;uaieddyi 07-0 l quaieddyl 0.1_0 l I I ;uaieddyi 0'T-0 ;uaieddyi 0'1-0 l I I ;ua.eddyl 01E -01T l I 7d I PuTN I gIdaa I I I I I I I I I I I I I I I I I I I I I I 'F sq; voW � uoT;eina �------------awegi I I 0/8 ____________auoNl 0/8 ------------auoNI I------------auoNl 0/8 ____________auoN) I (1/9 i____________avoNi I y ------------auoNl I y ____________auoNl ' I 0/J ____________auoN) I 0 ------------auoNl I y ____________auoNl I y ____________auoNI I 0/8 ____________auoNII I 0/8 ------------auoNI I 0/8 ------------auoNi 0/8 ____________auoNl 0/8 I ____________auoNi I J 1 .Souanbai3 I dnoib pua ;e sa;ou;oo; aas enl;deJ ----------------------8T s;uawwesdlz;ien0 s •LI �, epauTd ----------------------9T aazeupw —. IaPuTM l______________DI ossegeM l______________________Ei I PToggJ3y aTonq ';S 1 ----------------------TT ulaTATy l______________________0I iaddad �-----------------------6 I ETORd -------------- L132,19 wled �. I -----------------------L lumsPTO - ------ --9 -----------------------s ------------ a ' alegowwl aTTTRDnea -------------------- eaqoqj ----------------------- ----------------------- awe- ITos pue logwds deN aq; ;eq; sa eo u ,S.x ua ve o aquas [pa;ewT;sa ;ou aiam e;ep ;eg; zo usaouoa a ;ou sT ain;ea; 7 TP T 7 3 qy •ueq; aiow sueaw < .ueq; ssal sueaw > logw6s auL •;xa; aq; uT pauleldxa aie ,PagD.Iad,, pue „1;uajedde„ „,;aTlq,, „laaea,, se guns sma; pue ,aTge; as;en„ pue ,BuTpooT3„] Sa,duM33 dalLvm--'LT 3'IByS 96L Indian River County, Florida 197 TABLE 17. --HATER FEATURES --Continued iloocling High water table Map symbol and lHydrologicl T soil name , group Frequency Duration Months Depth Kind Months 20.* Beaches Z1--------- Pomello 22.* Urban land 23.* Arents C 24---------------------- B/D Floridana 25----------------------i C St. Augustine 26----------------------i B St. Augustine 27:* Boca------------------- B/D Urban land. i 28:* EauGallle--------------i .. B/D Urban land. 29:* Immokalee--------------i B/D Urban land. 31----------------------i B/D Jupiter 32----------------------i B Jonathan 33-------- -------------i A As la 34----------------------i C Satellite 35** -------------------- D McKee 36----------------------i B/D Boca 39----------------------i B/D Malabar 40** -------------------- D Gator i See footnotes at end of table. None------------ None------------ Very long----- Jan-Dec 2.0-3.5 Apparent 0-1.0 iApparent 1 1.5-3.0 iApparent 2.0-3.0 iApparent 0-1.0 iApparent 0-1.0 iApparent 0-1.0 iApparent 0-1.0 iApparent 3.0-5.0 iApparent >6.0 i --- 1.0-3.5 iApparent +2-0 iApparent 0-1.0 iApparent I � 0-1.0 iApparent +2-1.0 1ADParent Jul -Nov Jun -Feb Jul -Oct Jun -Oct Jun -Feb Jun -Oct Jun -Nov Jun -Nov Jun -Oct Jun -Nov Jan -Dec Jun -Feb Jun -Nov Jun -Dec r •aTgel oaQ-unr l luaxeddyl o•T_Z+ I dexTa0 qa3-anr l luaxeddyl o•T_Z+ -------------- 1-------------- ------ tti9 I I noN-Tar l luaauddyl O'T-0 Q ------------------ **09 I oaQ-aer l laaxeddyl 0•1_Z+ I xdy_unr l I I luaseddyI p•T_Z+ o,G-anr l I _ luaxeddyl O'T-Z+ I I ga3_unr l IaaxeddyI 0'T -Z+ r oaQ_ner l lnaxeddyl 0-Z+ --- l --- 1------------ anoN l I I gag_nnr l I luaxeddyI 0'T -'Z+ I I epatt9S qa3-unr l lnaxeddyl 0'T -Z+ 1---------------- I I oaQ-anr l luaxeddyl p•T_Z+ I I l noN_unr l luaxeddyI 0 T -O l loo-Tur l luaxeddyl S'£-O"Z I aaleueN I noN_unr l 4uaxeddyl 0'T -O l oaQ_anr l laaxeddyl O•S-S'£ I sPTO I I qag-unr l laaxeddyl o•T_Z+ l nOH-unr l luaxeddyl 0'T -T+ l oaQ-uer l luaxeddyl 0'T -T+ l oaQ-uer l —,r luaxeddyl 1 p •Z+ is 1 s4TuoW I PuTB l gldaa l aTgel xalex q TH t'OS I (I r •aTgel ;o pue le salouloo; aas I I I I dexTa0 --- ----------- 0 -------------- 1-------------- ------ tti9 r I I I I I o[n amog I-- - 1------------aUONI Q ------------------ **09 I I I I I I aaso%ol ..- ___l------------ auoN l I 0/H l_______________ ______69 I 1 1 einsmes --' l --- 1------------ auoN l Q/H I-------------- ------ tt85 r wedoToH --- l --- 1------------ anoN l I 0 1--------------------ttLS I epatt9S - l --------------- auoNI I 0 1---------------- I I I evepTxoTa --- l -- 1------------ anoNI 0 I -------------------- ttSS I I I oaQ_uer l----- 6uoT .txapi________Inanbaxd l Q. I xemoTa l____________________tt35 I I I aaleueN r --- --- i------------auoNl Q l___________________tt£S I I sPTO I --' -- ------------I I IauoNl Q -------------------- 1ttZS r I I I exaTnTH --- --- �------------ auoNI Q 1---'----------'_----tti5 s7 Td I I I t'OS I (I I--------------- o-edmod --- --- I 1------------ aaoNl 0/H I - _----6T' r I I I I I exloaM 1 --- --- --auoN1 0 ----------- '----------BB I I nedOToH r --- --- -----------aaoNI I I I Q/H I Li I'--------------------- I I I oals20 ------- --- 1----- anoNI B 1----------------------- 96 II a- I----------- --- I Ixpxw --- -------'----auoN1 Q --- I 't*St54 I I I I INTRA aaTxxad --- --- 1 ----------- -aaoN,l .... Q..... l-------------------- tt66 1 1 eTao exxay --- l --- 1------------ anoNl 0/H1-----------------'--ttZ6 _ 1 enoae0t 1 -- -----------auoNI Q/9 -------------------- � r TSI sgluoN l uoTlexnQ l douanbeal l dnoxb I aiueu TTos IaTboToxpSNl pue Togmds deN uTPooTx r PanuT4uo:)--S3=r" HnVt4--'LT aIM 86l _ r 204 Soil Survey N I I m m m n P I M 1 1 1 » r m m M N m M o o" 14 C~O I ra-4 -a r4 -a 000000 PMMN 10000 018 1 1 i 10 Oram NriO.4 ra rvr-1 1 comm»IO» NNNra w tn•Iry co r -am _ OMOPr.1 W _ _ nO i IOr1pPm»-4 \ b a»�. • 1 NNNN 1 1 1 1 r♦ 1 r -I 1 1 1 . • Pmnn • • rPPPmm10 • • • . »O I NNW»raNN raA r♦ N NN NN./N ra I WN»Om O Ommr nMMPmmN I I WOOPPmn-4 — — — — — — -�-------_ �. ----- rnt0» — — — — — — — mnO10 — — — — — — — — IO m — — — — — — mmmo — — — — mNM1O LOOM M W; »mPmlo» W O N 1 1 l l 1 1 • • . • • . . . \A 1 1 MNMN N I N I 1 1 at --4-1 m»»»Pmm mm I mMOhMV'l•1 N 1 1010»»10 rlo t01O t0» N NN NNr4N N -4N MP N.�NNri E -------------------------------------------------- ti N1 » tOM»»» X.4b a UI 1 mIo»W m 1 n 1 1 1 mmNm »NNmIONm 001 PNN.-ImPN r4 N a y 1»»»» M I P I 1 1 O N P P M» P M P P m P a l» 1010 n r m m 0000. -IOP 1 1 mPmmOOnm 1 1 1 1 1 1 d W.y4 -----------------------------------------------v AAAA A A ra9NN raAA14N-a -a OO NraN Nr -4 -4N ~ v11 O a ----- -------------------------------------------- NNnm OOOOOON 1 I NNNraNPmlO Nra g £I '3886c; u a O O O N 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 O N U U > a a,l W N 1 Nr m» P I» 1 1 I ION»W 1n 101 I rO Ori r I PIONONON tbi O> 0 0 0 1OmOO »1M1 1 1 NrmO POWOO -01mNOOHOO '00.l 4 4 V wwwm O 0 m m U U O wm -ara >U a+ b -a .1 5 ..., x N -------------------------------------------------- "'MM-40 P»PPr-10 -POP o O IONM-4PPOm10O P»Io for 1p-4 -comm »mom nnNPlo viP � i r♦ra luoPP»o -a r4NNmPP»m I OOOOO Ora AA A8 M -a PP Nr♦NNN•-�N I I NNram»MNm O oNmm-. oP»PPr-1 orPo ra o1oNMraPPomlo NNNN-4 V -- r -IN -am Plp r4r-INNmPP» »rygo MO.aOO OraMmNN Wmn.-1 OOP10O1iO O O I O O O O O O O O O O N m N N m O O O O O N m -4 0. . . . . . . . . . . . . . . . . . . . . . 4.+0o mmmmm mmmmWm mmom MMOMMoo HNO -- mmmmm — mmmmmm — mmmW — mmmmmmm —? I I O P P ry n» m m 1 1 1 100.1»PmM» �, -a------------ 1 1 m»Ommr4nN i i wai r to oar mlc mmmlo to mfor OONMO mmmmmm r . raP m10mOP--iP 1 1 »r.O Nr1M 1 -In 14 C~O I ra-4 -a r4 -a 000000 PMMN mPPP»»m 1 1 Oro r1 --I -a r -IN -a 4.-100 NNNra w a»�. NMONO NraP Pro» PO»m m9mWOMN 11NOrP--1101pm Nr♦ H I WN»Om r4PmP»m Ommr nMMPmmN I I WOOPPmn-4 WOO NMMPN NNNNNN rnt0» IOrrrnn» r4NNr4 ra r-1 -iN --------------------------------------------------- » »mmPn NPO»Om W-ImN N•OP»p-an I I NOPr1PMnm Soon p » N • • . • • . . . • . • • 1 1 H I »-4rM-4 Om m1UPm »n rin MOmWmnP I I Ip N-4NPN»ry 900 1010»»10 rlo t01O t0» NNr4N N -4N 10 bIOPPPmP E -------------------------------------------------- a N1 » tOM»»» MPPmnID Ip Orae P»mnmm-a 1 1 m10NO-a»PM I {a4 N .o I P»»Pm 1, Ion pmn ""MM 0000. -IOP 1 1 mPmmOOnm O -a -1-1-4 -1-4 -----------------------------------------------v ~ v11 O OOOo.-1 OOOOr1.-1 NNnm OOOOOON 1 I NNNraNPmlO Nra g £I '3886c; 0 0 0 0 0 0 O O O N 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 O N U 0 0 0 0 0 0 mm K W U U U U U V 0 4 W 0 N 4 Ci 4 4 V In •C 0 m m U U O 5 -------------------------------------------------- "'MM-40 P»PPr-10 -POP »mrPmrlO IONM-4PPOm10O Jl raM»m -aPnm -4NN -aMPtOm -a r4NNmPP»m CI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 — oNmm-. oP»PPr-1 orPo o»mrPmra o1oNMraPPomlo -aM» -- r -IN -am Plp r4r-INNmPP» 0 9 W -aNmP» -aNMP»Io -aNMP -4NmP» r raNmP»lormm.-a C a� 1 1p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 qE t mmmmmw 0 0 a s O O O O S 0 0 0 0 0 0 O o O o O S O S 000 0 0 0 0 0 0 0 0 6 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .. ri -a ri -a ra --1 -a r4 rl -4 ri ra r4 -a r4 r1 r'1 1=0�o0 o0 b0o0o00 0000 b00000 000coo 0 N R 0 N 1 1 1 1 1 N 1 1 1 1 1 1 as a 1 1 1 1 1 1 1 1001 l• 1 1 as 1 1 1 1 1 1 coo �wE'w�� m N N N N N N N N NNNNNNNmN N N N N NNNNNN u NNNNmNmN mN �Itl mN mN OU wN OO lm GO wwNw wwNwN w N( M0MMU)A wNw www U � mmmmmmmmm9 W(Mp mowwo mmmmmmmmm0 mmmmmmmmm •N•yy •Ny •aN•a�0.N.���Ny .N.y.0 .Ny .N.qq •NCO rW�.Wy .W�•.W�W•W�W•WyQ rw.www.�w Hwy .�w .w .wK •W .Ny �NN�NW.w .two I• �+ Ct" 1• t` i �� 1•Cp' �p�LQ�'to+.p� p� ~ t� 01010170101 Q• 01 Q1 (P 010101OIO1010101 092010/701 Q1 M MO 01Q mm i•i i WWi i r i -• i 000000000 YFO+000000 NNIO+N10+10-�N NIO.1 $0000000 WWWWWWWWW 77777777 VVVJJVJJJ JJJVJJJV 1 W1 J1 17UA1 1 W1 1 1Nr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 bWV7UAWNr b0J7UAWNr QiV7UAWNr V7AAWWr NAVr7WWW0 1 1 1 1 1 1 1 1 1 0V7AAWWr ONAVr7WWC0 7UAAWN WAWA0770 1 1 1 1 1 1 1 1 07UAAWN ONAbA077 7UWWWNH 0WJA0pAUO 1 1 1 1 1 1 1 1 1 wmwww WNr OOOWJAOOAU UAWWWr bJMwoJwO 1 1 1 1 1 11 1 JUAWWWr NbV7WOJU n01Qp'JJ��vineav 1]611 r H N1YR1 ww�owwwoa 7UAWNr Qb wa�clinwvls•v j1'il"J1'W W�q_ 1y n�1•ty�1�oren�+1v W_W WNrNr� OOOoo0000 00000011 oUrr00000 OOOO000O 00,0000000 JJWoo AI I l 01AOww"Www r000rHWo WWWWNWWWW JJUUU711 UOVVV7A00 AAWWAAWW rNUWbUrOm brNA0711 707A7Ni•NU AOA70UUN AAAAAAAAA WNNNNN OrNOONybOI HUWNW001 1 I 111111111 7WOANWODU N' VAN7071 1 AAAAAwAwA Nrrrr N. A7UNr00rb0 NJVJJW 1 1 OUOUrUWWH bbAONrlI 'A AUUUAUUA JUUUtU 00 1 1 W 7AmWrbW7 Nr77AU11 b b b b m O1 b b b V U U U U 7 NUUNb00 (OV7 O7rOOV t 1 I 111111111 O7bOV1Ar77 AN777011 NNNNWWUAA NNNNNNWW I 7AJ7UUrVJ OlJWWUOOOW 7A7NONAVU WNNA7NN7 WrNrNNNWN WWAAAAAA I v 000 I.I.7.rb W01AWAmJJ A700rJOOW AWOOr VIOA VUW W W W W AA .0007 U7JW 7NOGNVAbUW JO(OmUUr7 YaOTdOmmN 1VD 01m00m1bJVJ OD7077WOHr AOA7,W WbW rrrrr rNN NNNWUVrrr bbUA7r11 VUrN7UrNN NN77Urrr UbNUUrOUJ A70 AN U111 NAOAbUA UIr 47bAAUUr ""WWW" tnrrAUA00r OPWUWrII UUbUOUbO�V NN A.O NU11 rObrWAOAU VJW7UOOr OOOOUN7r7 bNJ01WV7r NrNNNAW r NrrN 0010 V r r 7 U r 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O O O A N 7 J A O N b O 7 W 7 A W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 U W J U 7 W r W rrrrr~~,-~ 01UUAWNArW 11111111 NUNUNrVJb 11111111 77UW71rwWb 1 1 1 1 O b b J b U b 7 7 1 1 1 1 A7AOa7NJA NUN7707U7 OrONNIJOrr 11111111 b r b J A W 7 V U 1 1 1 1 1 1 1 1 111111111 ~~rrrrr~ 111111111 77UWNUUA 1 1 1 1 1 1 1 1 1 7 W N O OD A l b O R b R r r 909 sppol:j rqunco jenid ueipul I rr Nr I 111111111 7bNAJWAU 1 1 1 1 1 1 1 1 1 1 UAbbODbAJ 1 A.ri 0�0 AN1u 41 i 1 1 1 1 1 1 1 1 1 111111111 UJr7A00r 1 1 1 1 1 1 1 1 1 1 ••• • 1 1 1 1 1 1 1 1 1 1 OON7UOOfbW 1 O R b R r r 909 sppol:j rqunco jenid ueipul I Rainfall Curves 4.6 4.8 5.0 ST. JOHNS RIVER I WATER MANAGEMENT DISTRICT' 4A 4'4 NASSAU I�� �� N I ack wnrillr BAKEQR�.) UVAL � � —{ i I t— r � CLAY a ,rte r. o ET. `-BRADFORD i JOHNS St. Au stow 4.0 •--•moi � - � ��_ Z i 42 rnaarlll PUTNAM Palatka —A 4.4 ALACHUA 1 � _ 1 �J� FLADLER I n i I 1 _ I o"l• I MARION �ytadhe I D.I.nd VOLUSIA LAKE L..bu I �L San V I i 42 I Tltuavll _8EMIND i . ORANGE' F L L/ t OSCEOLA ' 5D a l I O MDIAN Z RIVER voro Z" 4.8 OKEECHOBEE 4.6 1 4.4 Figure 6. Mean annual 24-hour maximum rainfall for northeast Florida in inches Source: Rao ]988a 16 TO 7.5 ST. JOHNS RIVER 6.0 65 I WATER MANAGEMENT DISTRICT NA55AU RAKERDUVAL • .--+ v' it CLAY � ST. -BRADFORD JOHNS St. August," 6.0 6.5 PUTNAM Palatka —� _ ALACHUA 7.0 -S 1 \ FLAGLER I 1 MARION 1 POLK 1 7.0 i i VOLUSIA I OSCEOLA ! \� `y I I a I SITE ti-- t 1 D INDIAN Z I RIVER V.ro u OKEECHOBEE 75 7.0 Figure 3. 10 -year 24-hour maximum rainfall for northeast Florida in inches Source: Rao 1988a 1.� 8.5 9A 9.5 7,5 4 &0 NASSAU 1 -' J.ck.nr BAKERDUVAL i t � r' j o CLA Y " YBRADFORD � 1 .rn.krill 7.5 • DH PUTNAM . 8.0 ALACUA I ST. JOHNS RIVER WATER MANAGEMENT DISTRICT ST. ST. JOHNS tt. Ao u.t m. Z latk. � 1 � F FLAGLER Cl _ 1 O• MAR70N 8wchul• / � I • I D r .I.ne VOLUSIA �i LAKE L«�burq _ f�5•n I ! SEMINOLE 7_1 ORANGE" ! 85 tt�� CEOLA ! !POLKl a i 1 l I INDIAN 9.5 Z I RIVER I / \1• OKEE CH EE 9.0 Figure 4. 25 -year 24-hour maximum rainfall for northeast Florida in inches Source: Rao 1988a 14 11.0 11.5 120 13.0 12.5 10.5 ' 10 SA A 1 V +N43ASAU G 9.5 9.0 • 10.0 AL, 10.5 11.0 11.5 12.0 i I I ST. JOHNS RIVER WATER MANAGEMENT DISTRICT " a a IS LL Aupo slMw Z I GLER 4 j D•rl� B. h L. Lr OKEECt40SEE O 13� � m a _ SITE \ z ,N R i V. o .LBrm 1 12� Figure 5. 100 -year 24-hour maximum rainfall for northeast Florida in inches Source: Rao 1988a AdICPR Input Data 1 1 1 i 1 i 1 Beach Cove AdlCPR Nodal Diagram August 3, 2004 Nodes A Stage/Area v Stage/volume T Time/Stage M Manhole Basins D overland Flow U SCS Unit Hydro S Santa Barbara Links P Pipe W Weir C Channel D Drop Structure B Bridge R Rating Curve H Breach A:PRE-1SITE S:PRE-1 A:PRE-2SITE S:PRE-2 A:PRE-3SITE S:PRE-3 A:PRE-4SITE S: PRE -4 A:DB-15ITE S:DB-1 AIDS-4SITE --<�(0 CS -5 ( A: DB-SSITE D: CS -4 .-_.__ _ _ _- __ T: BNDY W:DB-3WEIR A:DB-3SITE H -- _-' S: DH -3 W:DB-2WEIR i D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. A:DB-2SITE 00 D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 1 of 8 4: Beach Cove AdICPR Input Data August 3, 2004 mmu Basins amm mmmmmmcvummmmrmvmar- ------- ------Name: Name i DB -1 Node: D9-1SITE Status: Onsite Group: BASE Type: Santa Barbara Rainfall File: Storm Duration (hrs): 0.00 Rainfall Amount lin): 0.000 Time of Como min): 29.OD Area(ac): 0.000 Time Shift(hra): 0.00 r Curve Number: 62.00 Time Increment(min): 15.00 MIA I%): 0.00 Max Allowable Qfefa): 999999.000 ------------------------------------------------------------ ________________________________________ 4i Name: DB -2 Node: 08-2SITE Status: Malts Group: BASE Type: Santa Barbara Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount(in): 0.000 Time of Conc(minl: 31.00 Areafar) :.8.180 Time Shift(hra): 0.00 1.6 Curve Number: 63.00 Time Increment(min): 15.00 OCIA(4): 0.00 Max Allowable QW.): 999999.000 _____________________________________________________________________________________________________ Name: DB -3 Node: DS-3SITE Statua• Onsite wh Group: BASE Type: Santa Barbara Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amoont(in): 0.000 Time of Cone(min): 26.00 Area (ac): 2.230 Time Shift(hrs): 0.00 Curve Number: 59.00 Time Increment(min): 15.00 auk DCIAM : 0.00 Max Allowable Olcfs): 999999.000 ._-____________________ Name: DB -4 -_--_-________-__________-----_ Node: DB-4SITE Status: Onsite f Group: BASE Ba Type: Santa Barbara Rainfall File: Storm Wration(hra): 0.00 Rainfall Amount(in); 0.000 Time of Conclminl: 22.00 Area (ac): 8.07D Time Shift(hrs): 0.00 Curve Number: 72.00 Time Increment(min): 15.00 DCIA(R): 0.00 Max Allowable 0(cfs): 999999.000 ■Ij ._____________________ Name: DB -5 -__---_____-____-__________-_-___----_---_______________-_______ Node: DB-5SITE Status: Onsite Group: BASE Type: Santa Barbara Rainfall File: Storm Duration furs): 0.00 Rainfall Amountli.): 0.000 Time of Conclminl: 83.00 Area(ac): 5.400 Time Shift(hra): 0.00 Curve Number: 62.00 Time Increment(min): 15.00 MIA(%): 0.00 Max Allowable Q(cfa): 999999.000 laal _____________________________________________________________________________________-__________ Name: PRE -1 Node: PRE-1SITE Status: Onsite Group: BASE Type: Santa Barbara Rainfall File: Storm Dof 0.00 Rainfall Amount(in): 0.000 TimeTi of Conn(hrs): 29.00 ArNumbel: 56.00 hift(hin): Time Shift(hrs): 0.00 Curve E 56.00 Time Iowablemt(cfs): 15.00 IA (l): DCIA (U : 0.00 Max Allowable Q(cfa): 999999.000 NO ___________________________________________________________________________________________________ Name: PRE -2 Node: PRE-2SITE Status' Onsite Group: BASE Type: Santa Barbara Rainfall File: Storm Duration(hrs): 0.00 aMO Rainfall Amount(in): 0.000 Time of Conc(mdn): 31.00 Area(ac): 8.180 Time Shift(hrs): D.00 Curve Number: 63.00 Time Increment(min): 15.00 DCIA(B): 0.00 Max Allowable Q(Cfs): 999999.000 OWN -__________________________________________________________-__-________________ Name: PRE -3 Node: PRE-3SITE Status! Onsite Group: BASE Type: Santa Barbara Rainfall File: Storm Duration(hrs): 0.00 Rainfall Amount fin): 0.000 Time of Conclmin): 26.00 Area(ac): 2.230 Time Shift(hra): 0.00 Curve Number: 59.00 Time Increment(min): 15.OD DCIA(51: 0.00 Max Allowable MC$): 999999.000 00 D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 1 of 8 M D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Fj Page 2 of 8 Beach Cove AdICPR Input Data August 3, 2004 -----------------------------------------------------------------------------------------. Name: PRE -4 Node: PRE-4SITE Status: Onsite Group: BASE Type: Santa Barbara Rainfall File: , St.. Duratimn(hrs): 0.00 Rainfall Amount (in): 0.000 Time of Cone(ain): 48.00 Area W : 13.470 Time Shift(hre): 0.00 Curve Number: 61.OD Time Increment(min): 15.00 DCIA(8): 0.00 Har Allowable 0(cf.): 999999.000 4� .m Nodes L9Y NO Namez INDY Base Flow(cfal: 0.000 Init Stage(ft): 19.000 Group: BRSE warn Stage(ft): 0.000 Type: Time/Stage 4aa Time (hr.) Stage(ft) ----------------_---__------_ 0.00 19.000 999.00 19.000 ------------------------------------------------------------------------------------------ Name: OB-ISITE Base Flow(cfs): 0.000 Init Stage(ft): 26.000 Group: BASE Nam Stage(ft): 0.000 Type: Stage/Area Stage(ft) Area lacl ----- ------ 26.000 0.1600 26.500 0.2200 27.000 0.3000 27.50D 0.5600 29.000 0,8300 4A 26.500 1.1000 29.000 1.3800 29.500 1.6500 30.000 1.8800 30.500 2.1500 31.000 2.4600 - 31.500 2.7600 32.000 3.0600 32.500 3.3600 33.000 3.6600 33.500 3.9700 34.000 4.2700 34.500 4.5700 35.000 4.8700 35.500 5.1000 36.D00 5.4800 36.500 5.7800 37.000 6.0800 37.500 6.1800 r 38.000 6.2800 38.500 6.3400 39.000 6.3400 -------------------------------- ------------------ --------------------------------- Name: DB-2SITE Baa. Fl. (of.): 0.000 Init Stage(ft): 19.000 Group: BASE warn Stage(ft): 0.000 Type: Stage/Area Stage(ft) Area(ac) w 19.000 0.7700 19.500 0.7700 20.000 0.7800 20.500 0.9000 21.000 1.0600 21.500 1.3000 22.000 1.5700 , 22.500 1.9900 23.000 2.0000 23.500 2.1600 24.000 2.3200 29.500 2.4800 25.000 2.6400 25.500 2.8000 26.000 2.9600 26.500 3.1200 27.000 3.2900 27.500 3.4900 28.000 3.5900 28.500 3.7500 29.000 3.9100 29.500 4.0700 30.000 4.2300 30.500 4.3900 31.000 4.5500 D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Fj Page 2 of 8 .a Beach Cove AdICPR Input Data August 3, 2004 J psi 31.500 4.7100 32.000 4,8700 32.500 5.0300 33.000 5.1900 33.500 5.3500 34.000 5.5100 34.500 5.6600 35.000 5.8200 35.500 5.9800 36.000 6.1400 36.500 6.3000 37.000 6.4600 37.500 6.4900 38.000 6.5100 38.500 6.5300 39.000 - 6.5300 -------------------------------------------------- Name; ___________________ _________________Name: DB-3SITE Base Flow(cfs): 0.00( Group: BASE Type: Stage/Area Stage(ft) Arealac) 29.000 0.0000 30.000 0.0200 30.500 0.1400 31.000 0.2600 31.500 0.3900 32.000 0.5200 32.500 0.6400 33.000 0.7700 33.500 0.9000 34.000 1.0300 34.500 1.1500 35.000 1.2800 35.500 1.4100 36.000 1.5400 36.500 1.6600 37.000 1.7700 38.000 1.7700 ------------------------------------------------ Name: DB-4SITE Base Flow (Cf.): 0.000 Group: BASE Type: Stage/Area Stage(ft) Area(ac) __________ --------------- 19.000 0.7900 19.500 0.9100 20.000 1.0500 20.500 1.2700 21.000 1.5100 21.500 1.8300 22.000 2.1700 22.500 2.5000 23.000 2.8400 23.500 3.0400 24.000 3.2500 24.500 3.4500 25.000 3.6600 25.500 3.8600 26.000 4.0700 26.500 4.2700 27.000 4.4800 27.500 4.6800 28.000 4.8900 28.500 5.0900 29.000 5.2900 29.500 5.5000 30.000 5.7000 30.500 5.9100 31.000 6.1100 31.500 6.3200 32.000 6.5200 32.500 6.7300 33.000 6.9300 33.500 7.0400 37.000 7,0400 ------------------------------------------------- Name: DS-55ITE Base Flow(c[s): 0.000 Group: BASE Type: Stage/Area Stage(ft) Area(aa) __________ --------------- 20.000 0.0200 20.500 0.1800 21.000 0.3600 21.500 0.5400 22.000 0.7100 Init Stagelft): 29.080 Warn Stage(ft): 0.000 Init Stage(ft): 19.000 Warn Stage(ft): 0.000 Init Stage(ft): 20.000 Warn Stage(ft): 0.000 D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 3 of 8 am Beach cove MICPR Input Data PaN August 3, 2004 Init Stagelft): 28..000 Narn Stagelft): 0.000 Init Stage(ft): 19.000 Nam Stage(ft): 0.000 D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 4 of 8 22.500 - 0.8900 23.000 1.0700 23.500 1.2500 ON 24.000 1.4300 24.500 1.6100 25.OD0 1.8000 25.500 1.9900 26.000 2.1000 26.500 2.3700 27.000 2.5600 27.500 2.7500 28.000 2.9400 26.500 3.0800 29.000 3.2200 29.500 3.3500 30.000 3.4900 30.500 3.6200 31.000 3.7$00 31.500 3.8700 32.000 3.9900 32.500 4.1200 33.000 4.2400 - 35.000 4.2400 ----------------------------------------------------- None: PPE-1SITE Base Plov(cfal: 0.000 Group: BASE Type: Stage/Area Stage(ft) --- --------------- Area(acl -__----___ 28.000 0.780D 28.500 1.1400 29.000 1.5100 29.500 1.8800 30.000 2.1300 30.500 2.4300 31.000 2.7300 31.500 3.0400 32.000 3.3400 32.500 3.6500 33.000 3.9500 33.500 4.2600 34.000 4.5600 34.500 4.8700 35.000 5.1700 Oft 35.500 5.4800 36.000 5.7900 36.500 6.0900 37.000 6.4000 37.500 6.4600 38.000 6.5200 38.500 6.5600 39.000 6.5600 ------------------------------------------------------ Name: PRE-2SITE Base Plgvlefs): 0.000 Group: BASE Type: Stage/Area Stage(It) --------------- Araalac) _______________ 19.000 0.7700 19.500 0.7700 20.000 0.7800 20.500 0.9000 21.000 1.0600 21.500 1.3000 22.000 1.5700 22.500 1.8400 23.000 2.0000 23.500 2.1600 24.000 2.3200 24.500 2.4800 25.000 2.6400 25.500 2.8000 26.ODD 2.9600 26.SD0 3.1200 27.000 3.2800 27.500 3.4400 28.000 3.5900 28.500 3.7500 29.ODO 3.9100 ._� 29.500 4.0700 30.000 4.2300 30.500 4.3900 31.000 4.5500 31.500 4.7100 32.000 4.8700 32.500 5.0300 33.000 5.1900 33.500 5.3500 34.000 5.5100 34.500 5.660D we 35.000 5.8200 Init Stagelft): 28..000 Narn Stagelft): 0.000 Init Stage(ft): 19.000 Nam Stage(ft): 0.000 D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 4 of 8 .r Beach Cove AdICPR Input Data August 3, 2004 on 35.500 5.9800 36.000 6.1400 36.500 6.3000 37.000 6.4600 37.500 6.4900 on 38.000 6.5100 38.500 6.5300 39.000 6.5300 ____________________________________________________________________-______________ Name: PRE-3SITE Base Flov(cfs): 0.000 Init Stage(ft): 29.000 sed Group: BASE Warn Stage(ft): 0.000 Type: Stage/Area Stage (ft) ________ _ Area (ac) PW 29.000 0.0000 30.000 0.0200 30.500 0.1400 31.000 0.2600 31.500 0.39DO 32.000 0.5200 Ork 32.500 0.6400 33.00D 0.7700 33.500 0.9000 34.000 1.0300 34.500 1.1500 35.ODD 1.2800 35.500 1.4100 36.000 1.5400 136.500 1.6600 37.000 1.77DO - 38.000 1.7700 ------------------------------------------------------------ _----------------- Name: PRE-4SITE Base F1oWjcfa): 0.000 __-_______ Init Stage(ft): 19.000 Group: BASE Warn Stage(ft): O.UOo Type: Stage/Area _______________ _______________ S------- ------- 19.000 0.0200 19.500 0.4000 2D.ODO 0.79DO 20.500 1.1900 21.000 1.5000 21.500 1.9800 22.000 2.3800 22.500 2.7700 23.000 3.1700 23.SDD 3.5700 24.000 3.9600 4WW 24.500 4.00 25.000 4.700 ' 25.500 5.1155500 26.000 5.5500 26.500 5.9400 27.000 6.3400 Mae 27.500 6.7400 26.000 7.1300 28.500 7.5300 29.000 7.9200 29.500 8.3200 30.000 9.7200 9.1100 OWN 31.000 9.5100 31.500 9.9000 32.000 10.3000 32.500 10.7000 33.000 11.0900 33.500 11.4904 Wee 34.000 11.9900 34.500 12.2800 35.000 12.6800 35.500 13.0700 36.000 13.4700 39:000 13.4700 � ..e Drop Structures Name: CS -4 From Node: DB-4SITE Length(ft): 40.00 Group: BASE To Node: BNDy Count: 1 ' UPSTREAM DOWNSTREAM Riction Equation: Average Conveyance Geometry: Circular Circular Solution Algorithm: Automatic Span(in): 24.00 24.00 Flow: Both Rise(in): 24.00 24.00 Entrance Loss Coef: 3.200 Invert(ft): 19.000 19.000 Exit Loss Coef: D.600 4ek Mem ing'a N: 0.012000 0.012000 outlet Ctrl Spec: Use do or tw Top Clip(in): 0.000 0.000 Inlet Ctrl Spec: Use dn not Cliplin): 0.000 0.000 Solution Inca: 10 Upstream MA Inlet Edge Description: NOW D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 5 of 8 Nab Beach Cove Ad1CPR Input Data Was August 3, 2004 Circular Concrete: Square edge w/ headwall Downstream FHBA Inlet Edge Description: Circular Concrete: Square edge w/ headwall •`• I Weir 1 of 3 for Drop Structure CS -4 ••• TABLE - Count: 1 Bottom C21p(in)i 0.000 Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coal: 3.200 Geometry: Circular Orifice Disc Coaf: 0.600 Span(in): 4.00 Invett(lt): 19.000 Rise(in): 4.00 Control Elev(ft): 19.000 "• Weir 2 0[ 3 for Drop Structure CS -4 ••• TABLE Count: I Bottom Clip(in): 0.000 Type: Vertical: Mavis Top Clip(in): 0.000 Flow: Both Weir Disc Coef: 3.200 Geometry: Rectangular Orifice Disc Coef: 0.600 Span(in): 7.00 Invert(ft): 19.800 Rise (in): 26.4D Control Elev(ft): 19.800 ••• Meir 3 of 3 for Drop Structure CS -4 ••• TABLE 4q C: 1 Bottom Clip(in): 0.000 Type: Horizontal Type Top 0.000 Flow: Both Disc Con): Disc Coef: 3.200 Geometry: Rectangular OWeirrifice Orifice Olac Coat: 0.600 Spanlin): 40.00 Invert(ft): 22.000 Rise(in): 52.00 Control Elev(tt): 0.000 - ---------------------------------------------------------------------------------------------------- Name: CS -5 From Node: DS-SSITE Length lit): 80.00 Group: BASE To Node: DB-4SITE Count: 1 4� UPSTREAM DOWNSTREAM Friction E gorthm: Average Conveyance Geometry: Circular Circular Solution Algorithm: Automatic Span(in): 18.00 18.00 Flow: Both Rise(): 1.00 16.00 Entrance Leas Coef: 3.200 Invert(ftIt): 166.000 16.000 Exit Lars Coef: 0.600 N: 0.012000 0.012000 Hp Outlet Ctrl Spee Use or tw Clip(in): Top Cliplin): 0.000 0.000 Inlet Ctrl Spec: do Use do Bot Clip fin): 0.000 0.000 solution Inca: 10 Upstream FHNA Inlet Edge Description: Circular Concrete: Square edge w/ headwall - Downstream FHNA Inlet Edge Description: Circular Concrete: Square edge w/ headwall `•• Weir 1 of 2 for Drop Structure CS -5 ••• TABLE Count: 1 Bottom Clip(in): 0.000 Type: Vertical: Mavis Top Clip(in): O.ODD Flow: Both Weir Disc Coef: 3.200 Geometry: Circular Orifice Disc Coef: 0.600 Span(in): 3.00 Invert(ft): 20.000 Rlselinl: 3.00 Control EleVlftl: 20.000 ••• Weir 2 of 2 for Drop Structure Cs -5 ••• TASLE Count: 1 Bottom Clip(in): 0.000 Type: Horizontal Top Clip(in;: 0.000 Flow: Both Meir Disc Coef: 3.200 - Geometry: Rectangular Orifice Disc Coef: 0.600 Span(in): 40.00 Invert(ft): 22.500 Rise(in): 52.00 Central Elev(ft): 22.500 ....................e.... ----..o.........---------- .e®...e....... .... Weirs o...e.eo.o.o...............-®.....om..............e..e.®.... Name: DB-2WEIR From Node: 08-2SITE Group: BASE To Node: BNDY Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Potato lic Top Midthlftl: 700.00 Correa Depth(ft): 0.20 Invert(ft): 19.000 Control Elevation(It): 19.000 struct Opening Dimlfq: 9999.00 TABLE Bottom Clip([t): 0.000 Tap Cllp(ft): 0.000 Weir Discharge Coef: 3.20D Orifice Discharge Coef: 0.600 4441 D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 6 of 8 I r Beach Cove ACICPR Input Data August 3, 2004 _________________________________________________________________--__--_'______--________---___-- Name: 05-3WEIR From Node: DS-3SITE Group: BASE To Node: BNDY Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Parabolic Top Width(ft): 470.00 Comes Oepth(ft): 0.20 as Invert(ft): 31.000 Control Elena Clon(ft): 31.000 Struct Opening Olmlft7: 9999.00 TABLE BottomClip(ft): 0.000 Top 0.000 e Cots: Nair Dischargrge Co: 3.200 Orifice Discharge Coat: 0.600 Hydrology Simulations Name: 10 YR 24 HR Filename: P:\Proj-2002\02-127 Beach Cove\corr\SWM$\adicpr\10 YR 24 MR.R32 Override Defaults: Yes ossi St.. Durationlhrs): 24.00 Rainfall File: Flood Rainfall Amount(in): 7.80 Time(hra) Print Inc)min) _______________ _______________ 30.000 15.00 ___________________________________________________—__--_--_---__-________----_______----------- Name: 100 YR 24 HR Filename: P:\Proj-2002\02-127 Beach Cove\core\SWMS\edicpm\loo YR 24 HR.R32 Override Defaults: Yes 104 Storm Duration(hrs): 24.00 Rainfall File: Flmod Rainfall Amount(in): 12.20 T1me(hrs) Print Inc(mia) ______________________________ mol 30.000 15.00 ____________________________________________________________________________________________________ Name: 25 YR 24 HR Filename: P:\Proj-2002\02-127 Beach Cove\corn\SLAMS\adicpr\25 YR 24 HR.R32 Override Defaults: Yes .J Storm Duration(hrs): 24.00 Rainfall File: Flood Rainfall Mount (in): 9.30 Timelhra) Print Inc(min) _______________ _______________ mO 30.000 15.00 ________________________________________________________—____________---_---____________-__________ Name: MEAN ANNDAL Filename: P:\Proj-2002\02-127 Beach Cove\mrr\SNHS\adicpr\XEAN ANNUAL.R32 Override Defaults: Yes hall Storm Duration (hes): 24.00 Rainfall File: Flood Rainfall luvount (Ln): 9.00 Timelhra) Print.Inc(min) _______________ _______________ aam 36.000 15.00 Routuim�®ulatiee�—_-__—������.�...o�®Ra=so®o®�=e�����o����� Ro!ng Simulations moans®e��a®����e�ea s.mee���aaem�m.�ee.®.���weva Name: 10 YR 24 HR Hydrology Sim: 10 YR 24 HR see Filename: P:\Proj-2002\02-127 Beach Cove\mrr\SLAMS\adicpr\30 YR 24 HR.I32 Execute: Yea Restart: No Patch: No Alternative: No Max Delta ZIet1: I.00 Delta 2 Factor: 0.00500 'As' Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Timelhra): 30.00 Min C01C Tlmelsec): 0.5000 Max Calc Tim.(sec): 60.0000 Boundary Stages: SHOT Boundary Flows: mm4 Time)hra) Print Inc)min) _______________ _______________ 30.000 15.000 sees D.L. Phillips, P.E. Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 7 of 8 a. Beach Cove AdICPR Input Data August 3, 2004 OR Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 8 of 8 eas Group Run _______________ ----- BASE Yes _______________________lo Name: 100 YR 29 dA YR __-__100__-_2____-________________ Hydrology Sim: 100 29 HR Filename: P:\Prmj-2002\02-127 BeachCove\torr\SNHS\adiepx\100 Y0. 29 HR .132 Execute: Yes Restart: No Patch: No Alternative: No Nax Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hxsl: 30.00 Min Calc Tim.(...): 0.5000 Ms. Calc Tim.(...): 60.0000 Boundary Stages: BNDY Boundary Flows: Time(hrs) Print Inclmin( _______________ _______________ 30.000 15.000 go Group Ron -------------- ---- SASE Yes ---------- __----- ---------- ---- _y_________________________________________ Name: 25 YR 24 HR tl dcology Sim: 25 YR 24 HR Filename: P:\Prof-2002\02-127 Beach Co1e\coir\SMHS\adicpr\25 YR 24 NR.I32 Execute: Yes Restart: No Patch: No Alternative: NO Nax Delta Z(ft): 1.00 Delta z Factor: 0.00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 30.00 His Calc Time(...): 0.5000 Max Calc Timeisac): 60.0000 Boundary Stages: BNDY Boundary Flaws: Time(hrs) Print I.. (min) _______________ _______________ 30.000 15.000 on Group _--_ RW__ ---_- BASE Yes ________________________________________________________________________________. Name: HEAN ANNDAL Hydrology Sim: MEAN ANNUAL Filename: P:\Ptoj-2002\02-127 Beach Cove\ccrr\SNHS\adi@x\NZAN ANNOAL.232 Execute: Yes Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 A Time Step Optimizer. 10.000 Start Time(hrs): 0.000 End Time(hrs): 30.00 Min Calc Time (sec): 0.5000 Has: Celt Time(sec): 60.000D Boundary Stages: BNDY Boundary Flows: Time(hrs) Print Imc(minl -------------- ______________ 30.000 15.000 Group Ran EASE Yes ®..e..vo.o.....�.a�nmm...n..m..m...a...o®.=..mm.s�m.... Boundary Conditions ...�n.®e...®.....®..a.�.�n.....a..e� oma... Name: Body Node: BNDY Type: Stage Time(hrs( Stage(ft) -------------- --------------- 0.000 19.000 999.000 19.000 OR Interconnected Channel and Pond Routing Model (ICPR) 02002 Streamline Technologies, Inc. Page 8 of 8 eas O N 4 E 0 a ury T F E +Vi +V1WAWbg4NA NN>>DNJ O?N ��MMCCMNG tiWuuVVY as oe N+i4NN VU'M.Wi U' z.uNa841>3 xxx£quS� s oVVo W 33N�30%30 ti V.ti n+4i Gn +4i W OWW40WY U4UVO4U0 MM 4 NNNNNNY1W 41 mgmm�g%Hy OOq 6 "Moo" N4I 41oo" 0 Q Q uluw.°.i .... m..N I I A U A W 90 11 I1, ]� 111 11